|
|
|
// • ▌ ▄ ·. ▄▄▄· ▄▄ • ▪ ▄▄· ▄▄▄▄· ▄▄▄· ▐▄▄▄ ▄▄▄ .
|
|
|
|
// ·██ ▐███▪▐█ ▀█ ▐█ ▀ ▪██ ▐█ ▌▪▐█ ▀█▪▐█ ▀█ •█▌ ▐█▐▌·
|
|
|
|
// ▐█ ▌▐▌▐█·▄█▀▀█ ▄█ ▀█▄▐█·██ ▄▄▐█▀▀█▄▄█▀▀█ ▐█▐ ▐▌▐▀▀▀
|
|
|
|
// ██ ██▌▐█▌▐█ ▪▐▌▐█▄▪▐█▐█▌▐███▌██▄▪▐█▐█ ▪▐▌██▐ █▌▐█▄▄▌
|
|
|
|
// ▀▀ █▪▀▀▀ ▀ ▀ ·▀▀▀▀ ▀▀▀·▀▀▀ ·▀▀▀▀ ▀ ▀ ▀▀ █▪ ▀▀▀
|
|
|
|
// Magicbane Emulator Project © 2013 - 2022
|
|
|
|
// www.magicbane.com
|
|
|
|
|
|
|
|
package engine.math;
|
|
|
|
|
|
|
|
import org.pmw.tinylog.Logger;
|
|
|
|
|
|
|
|
import java.nio.FloatBuffer;
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>Matrix3f</code> defines a 3x3 matrix. Matrix data is maintained
|
|
|
|
* internally and is accessible via the get and set methods. Convenience methods
|
|
|
|
* are used for matrix operations as well as generating a matrix from a given
|
|
|
|
* set of values.
|
|
|
|
*/
|
|
|
|
public class Matrix3f {
|
|
|
|
public float m00, m01, m02;
|
|
|
|
public float m10, m11, m12;
|
|
|
|
public float m20, m21, m22;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Constructor instantiates a new <code>Matrix3f</code> object. The initial
|
|
|
|
* values for the matrix is that of the identity matrix.
|
|
|
|
*/
|
|
|
|
public Matrix3f() {
|
|
|
|
loadIdentity();
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* constructs a matrix with the given values.
|
|
|
|
*
|
|
|
|
* @param m00 0x0 in the matrix.
|
|
|
|
* @param m01 0x1 in the matrix.
|
|
|
|
* @param m02 0x2 in the matrix.
|
|
|
|
* @param m10 1x0 in the matrix.
|
|
|
|
* @param m11 1x1 in the matrix.
|
|
|
|
* @param m12 1x2 in the matrix.
|
|
|
|
* @param m20 2x0 in the matrix.
|
|
|
|
* @param m21 2x1 in the matrix.
|
|
|
|
* @param m22 2x2 in the matrix.
|
|
|
|
*/
|
|
|
|
public Matrix3f(float m00, float m01, float m02, float m10, float m11,
|
|
|
|
float m12, float m20, float m21, float m22) {
|
|
|
|
|
|
|
|
this.m00 = m00;
|
|
|
|
this.m01 = m01;
|
|
|
|
this.m02 = m02;
|
|
|
|
this.m10 = m10;
|
|
|
|
this.m11 = m11;
|
|
|
|
this.m12 = m12;
|
|
|
|
this.m20 = m20;
|
|
|
|
this.m21 = m21;
|
|
|
|
this.m22 = m22;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Copy constructor that creates a new <code>Matrix3f</code> object that is
|
|
|
|
* the same as the provided matrix.
|
|
|
|
*
|
|
|
|
* @param mat the matrix to copy.
|
|
|
|
*/
|
|
|
|
public Matrix3f(Matrix3f mat) {
|
|
|
|
copy(mat);
|
|
|
|
}
|
|
|
|
|
|
|
|
static boolean equalIdentity(Matrix3f mat) {
|
|
|
|
if (Math.abs(mat.m00 - 1) > 1e-4)
|
|
|
|
return false;
|
|
|
|
if (Math.abs(mat.m11 - 1) > 1e-4)
|
|
|
|
return false;
|
|
|
|
if (Math.abs(mat.m22 - 1) > 1e-4)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (Math.abs(mat.m01) > 1e-4)
|
|
|
|
return false;
|
|
|
|
if (Math.abs(mat.m02) > 1e-4)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (Math.abs(mat.m10) > 1e-4)
|
|
|
|
return false;
|
|
|
|
if (Math.abs(mat.m12) > 1e-4)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (Math.abs(mat.m20) > 1e-4)
|
|
|
|
return false;
|
|
|
|
return !(Math.abs(mat.m21) > 1e-4);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>copy</code> transfers the contents of a given matrix to this
|
|
|
|
* matrix. If a null matrix is supplied, this matrix is set to the identity
|
|
|
|
* matrix.
|
|
|
|
*
|
|
|
|
* @param matrix the matrix to copy.
|
|
|
|
*/
|
|
|
|
public void copy(Matrix3f matrix) {
|
|
|
|
if (null == matrix) {
|
|
|
|
loadIdentity();
|
|
|
|
} else {
|
|
|
|
m00 = matrix.m00;
|
|
|
|
m01 = matrix.m01;
|
|
|
|
m02 = matrix.m02;
|
|
|
|
m10 = matrix.m10;
|
|
|
|
m11 = matrix.m11;
|
|
|
|
m12 = matrix.m12;
|
|
|
|
m20 = matrix.m20;
|
|
|
|
m21 = matrix.m21;
|
|
|
|
m22 = matrix.m22;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>get</code> retrieves a value from the matrix at the given position.
|
|
|
|
* If the position is invalid a <code>Exception</code> is thrown.
|
|
|
|
*
|
|
|
|
* @param i the row index.
|
|
|
|
* @param j the column index.
|
|
|
|
* @return the value at (i, j).
|
|
|
|
* @throws Exception
|
|
|
|
*/
|
|
|
|
public float get(int i, int j) throws Exception {
|
|
|
|
switch (i) {
|
|
|
|
case 0:
|
|
|
|
switch (j) {
|
|
|
|
case 0:
|
|
|
|
return m00;
|
|
|
|
case 1:
|
|
|
|
return m01;
|
|
|
|
case 2:
|
|
|
|
return m02;
|
|
|
|
}
|
|
|
|
case 1:
|
|
|
|
switch (j) {
|
|
|
|
case 0:
|
|
|
|
return m10;
|
|
|
|
case 1:
|
|
|
|
return m11;
|
|
|
|
case 2:
|
|
|
|
return m12;
|
|
|
|
}
|
|
|
|
case 2:
|
|
|
|
switch (j) {
|
|
|
|
case 0:
|
|
|
|
return m20;
|
|
|
|
case 1:
|
|
|
|
return m21;
|
|
|
|
case 2:
|
|
|
|
return m22;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
throw new Exception("Invalid indices into matrix.");
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>get(float[])</code> returns the matrix in row-major or column-major
|
|
|
|
* order.
|
|
|
|
*
|
|
|
|
* @param data The array to return the data into. This array can be 9 or 16
|
|
|
|
* floats in size. Only the upper 3x3 are assigned to in the case
|
|
|
|
* of a 16 element array.
|
|
|
|
* @param rowMajor True for row major storage in the array (translation in
|
|
|
|
* elements 3, 7, 11 for a 4x4), false for column major
|
|
|
|
* (translation in elements 12, 13, 14 for a 4x4).
|
|
|
|
* @throws Exception
|
|
|
|
*/
|
|
|
|
public void get(float[] data, boolean rowMajor) throws Exception {
|
|
|
|
if (data.length == 9) {
|
|
|
|
if (rowMajor) {
|
|
|
|
data[0] = m00;
|
|
|
|
data[1] = m01;
|
|
|
|
data[2] = m02;
|
|
|
|
data[3] = m10;
|
|
|
|
data[4] = m11;
|
|
|
|
data[5] = m12;
|
|
|
|
data[6] = m20;
|
|
|
|
data[7] = m21;
|
|
|
|
data[8] = m22;
|
|
|
|
} else {
|
|
|
|
data[0] = m00;
|
|
|
|
data[1] = m10;
|
|
|
|
data[2] = m20;
|
|
|
|
data[3] = m01;
|
|
|
|
data[4] = m11;
|
|
|
|
data[5] = m21;
|
|
|
|
data[6] = m02;
|
|
|
|
data[7] = m12;
|
|
|
|
data[8] = m22;
|
|
|
|
}
|
|
|
|
} else if (data.length == 16) {
|
|
|
|
if (rowMajor) {
|
|
|
|
data[0] = m00;
|
|
|
|
data[1] = m01;
|
|
|
|
data[2] = m02;
|
|
|
|
data[4] = m10;
|
|
|
|
data[5] = m11;
|
|
|
|
data[6] = m12;
|
|
|
|
data[8] = m20;
|
|
|
|
data[9] = m21;
|
|
|
|
data[10] = m22;
|
|
|
|
} else {
|
|
|
|
data[0] = m00;
|
|
|
|
data[1] = m10;
|
|
|
|
data[2] = m20;
|
|
|
|
data[4] = m01;
|
|
|
|
data[5] = m11;
|
|
|
|
data[6] = m21;
|
|
|
|
data[8] = m02;
|
|
|
|
data[9] = m12;
|
|
|
|
data[10] = m22;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
throw new Exception("Array size must be 9 or 16 in Matrix3f.get().");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>getColumn</code> returns one of three columns specified by the
|
|
|
|
* parameter. This column is returned as a <code>Vector3f</code> object.
|
|
|
|
*
|
|
|
|
* @param i the column to retrieve. Must be between 0 and 2.
|
|
|
|
* @return the column specified by the index.
|
|
|
|
* @throws Exception
|
|
|
|
*/
|
|
|
|
public Vector3f getColumn(int i) throws Exception {
|
|
|
|
return getColumn(i, null);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>getColumn</code> returns one of three columns specified by the
|
|
|
|
* parameter. This column is returned as a <code>Vector3f</code> object.
|
|
|
|
*
|
|
|
|
* @param i the column to retrieve. Must be between 0 and 2.
|
|
|
|
* @param store the vector object to store the result in. if null, a new one
|
|
|
|
* is created.
|
|
|
|
* @return the column specified by the index.
|
|
|
|
* @throws Exception
|
|
|
|
*/
|
|
|
|
public Vector3f getColumn(int i, Vector3f store) throws Exception {
|
|
|
|
if (store == null)
|
|
|
|
store = new Vector3f();
|
|
|
|
switch (i) {
|
|
|
|
case 0:
|
|
|
|
store.x = m00;
|
|
|
|
store.y = m10;
|
|
|
|
store.z = m20;
|
|
|
|
break;
|
|
|
|
case 1:
|
|
|
|
store.x = m01;
|
|
|
|
store.y = m11;
|
|
|
|
store.z = m21;
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
store.x = m02;
|
|
|
|
store.y = m12;
|
|
|
|
store.z = m22;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
throw new Exception("Invalid column index. " + i);
|
|
|
|
}
|
|
|
|
return store;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>getColumn</code> returns one of three rows as specified by the
|
|
|
|
* parameter. This row is returned as a <code>Vector3f</code> object.
|
|
|
|
*
|
|
|
|
* @param i the row to retrieve. Must be between 0 and 2.
|
|
|
|
* @return the row specified by the index.
|
|
|
|
* @throws Exception
|
|
|
|
*/
|
|
|
|
public Vector3f getRow(int i) throws Exception {
|
|
|
|
return getRow(i, null);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>getRow</code> returns one of three rows as specified by the
|
|
|
|
* parameter. This row is returned as a <code>Vector3f</code> object.
|
|
|
|
*
|
|
|
|
* @param i the row to retrieve. Must be between 0 and 2.
|
|
|
|
* @param store the vector object to store the result in. if null, a new one
|
|
|
|
* is created.
|
|
|
|
* @return the row specified by the index.
|
|
|
|
* @throws Exception
|
|
|
|
*/
|
|
|
|
public Vector3f getRow(int i, Vector3f store) throws Exception {
|
|
|
|
if (store == null)
|
|
|
|
store = new Vector3f();
|
|
|
|
switch (i) {
|
|
|
|
case 0:
|
|
|
|
store.x = m00;
|
|
|
|
store.y = m01;
|
|
|
|
store.z = m02;
|
|
|
|
break;
|
|
|
|
case 1:
|
|
|
|
store.x = m10;
|
|
|
|
store.y = m11;
|
|
|
|
store.z = m12;
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
store.x = m20;
|
|
|
|
store.y = m21;
|
|
|
|
store.z = m22;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
throw new Exception("Invalid row index. " + i);
|
|
|
|
}
|
|
|
|
return store;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>fillFloatBuffer</code> fills a FloatBuffer object with the matrix
|
|
|
|
* data.
|
|
|
|
*
|
|
|
|
* @param fb the buffer to fill, starting at current position. Must have
|
|
|
|
* room for 9 more floats.
|
|
|
|
* @return matrix data as a FloatBuffer. (position is advanced by 9 and any
|
|
|
|
* limit set is not changed).
|
|
|
|
*/
|
|
|
|
public FloatBuffer fillFloatBuffer(FloatBuffer fb) {
|
|
|
|
fb.put(m00).put(m01).put(m02);
|
|
|
|
fb.put(m10).put(m11).put(m12);
|
|
|
|
fb.put(m20).put(m21).put(m22);
|
|
|
|
return fb;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>setColumn</code> sets a particular column of this matrix to that
|
|
|
|
* represented by the provided vector.
|
|
|
|
*
|
|
|
|
* @param i the column to set.
|
|
|
|
* @param column the data to set.
|
|
|
|
* @throws Exception
|
|
|
|
*/
|
|
|
|
public void setColumn(int i, Vector3f column) throws Exception {
|
|
|
|
|
|
|
|
if (column == null) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
switch (i) {
|
|
|
|
case 0:
|
|
|
|
m00 = column.x;
|
|
|
|
m10 = column.y;
|
|
|
|
m20 = column.z;
|
|
|
|
break;
|
|
|
|
case 1:
|
|
|
|
m01 = column.x;
|
|
|
|
m11 = column.y;
|
|
|
|
m21 = column.z;
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
m02 = column.x;
|
|
|
|
m12 = column.y;
|
|
|
|
m22 = column.z;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
throw new Exception("Invalid column index. " + i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>setRow</code> sets a particular row of this matrix to that
|
|
|
|
* represented by the provided vector.
|
|
|
|
*
|
|
|
|
* @param i the row to set.
|
|
|
|
* @param row the data to set.
|
|
|
|
* @throws Exception
|
|
|
|
*/
|
|
|
|
public void setRow(int i, Vector3f row) throws Exception {
|
|
|
|
|
|
|
|
if (row == null) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
switch (i) {
|
|
|
|
case 0:
|
|
|
|
m00 = row.x;
|
|
|
|
m01 = row.y;
|
|
|
|
m02 = row.z;
|
|
|
|
break;
|
|
|
|
case 1:
|
|
|
|
m10 = row.x;
|
|
|
|
m11 = row.y;
|
|
|
|
m12 = row.z;
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
m20 = row.x;
|
|
|
|
m21 = row.y;
|
|
|
|
m22 = row.z;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
throw new Exception("Invalid row index. " + i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>set</code> places a given value into the matrix at the given
|
|
|
|
* position. If the position is invalid a <code>Exception</code> is thrown.
|
|
|
|
*
|
|
|
|
* @param i the row index.
|
|
|
|
* @param j the column index.
|
|
|
|
* @param value the value for (i, j).
|
|
|
|
* @throws Exception
|
|
|
|
*/
|
|
|
|
public void set(int i, int j, float value) throws Exception {
|
|
|
|
switch (i) {
|
|
|
|
case 0:
|
|
|
|
switch (j) {
|
|
|
|
case 0:
|
|
|
|
m00 = value;
|
|
|
|
return;
|
|
|
|
case 1:
|
|
|
|
m01 = value;
|
|
|
|
return;
|
|
|
|
case 2:
|
|
|
|
m02 = value;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
case 1:
|
|
|
|
switch (j) {
|
|
|
|
case 0:
|
|
|
|
m10 = value;
|
|
|
|
return;
|
|
|
|
case 1:
|
|
|
|
m11 = value;
|
|
|
|
return;
|
|
|
|
case 2:
|
|
|
|
m12 = value;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
case 2:
|
|
|
|
switch (j) {
|
|
|
|
case 0:
|
|
|
|
m20 = value;
|
|
|
|
return;
|
|
|
|
case 1:
|
|
|
|
m21 = value;
|
|
|
|
return;
|
|
|
|
case 2:
|
|
|
|
m22 = value;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
throw new Exception("Invalid indices into matrix.");
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>set</code> sets the values of the matrix to those supplied by the
|
|
|
|
* 3x3 two dimenion array.
|
|
|
|
*
|
|
|
|
* @param matrix the new values of the matrix.
|
|
|
|
* @throws Exception if the array is not of size 9.
|
|
|
|
*/
|
|
|
|
public void set(float[][] matrix) throws Exception {
|
|
|
|
if (matrix.length != 3 || matrix[0].length != 3) {
|
|
|
|
throw new Exception("Array must be of size 9.");
|
|
|
|
}
|
|
|
|
|
|
|
|
m00 = matrix[0][0];
|
|
|
|
m01 = matrix[0][1];
|
|
|
|
m02 = matrix[0][2];
|
|
|
|
m10 = matrix[1][0];
|
|
|
|
m11 = matrix[1][1];
|
|
|
|
m12 = matrix[1][2];
|
|
|
|
m20 = matrix[2][0];
|
|
|
|
m21 = matrix[2][1];
|
|
|
|
m22 = matrix[2][2];
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Recreate Matrix using the provided axis.
|
|
|
|
*
|
|
|
|
* @param uAxis Vector3f
|
|
|
|
* @param vAxis Vector3f
|
|
|
|
* @param wAxis Vector3f
|
|
|
|
*/
|
|
|
|
public void fromAxes(Vector3f uAxis, Vector3f vAxis, Vector3f wAxis) {
|
|
|
|
m00 = uAxis.x;
|
|
|
|
m10 = uAxis.y;
|
|
|
|
m20 = uAxis.z;
|
|
|
|
|
|
|
|
m01 = vAxis.x;
|
|
|
|
m11 = vAxis.y;
|
|
|
|
m21 = vAxis.z;
|
|
|
|
|
|
|
|
m02 = wAxis.x;
|
|
|
|
m12 = wAxis.y;
|
|
|
|
m22 = wAxis.z;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>set</code> sets the values of this matrix from an array of values
|
|
|
|
* assuming that the data is rowMajor order;
|
|
|
|
*
|
|
|
|
* @param matrix the matrix to set the value to.
|
|
|
|
* @throws Exception
|
|
|
|
*/
|
|
|
|
public void set(float[] matrix) throws Exception {
|
|
|
|
set(matrix, true);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>set</code> sets the values of this matrix from an array of values;
|
|
|
|
*
|
|
|
|
* @param matrix the matrix to set the value to.
|
|
|
|
* @param rowMajor whether the incoming data is in row or column major order.
|
|
|
|
*/
|
|
|
|
public void set(float[] matrix, boolean rowMajor) throws Exception {
|
|
|
|
if (matrix.length != 9)
|
|
|
|
throw new Exception("Array must be of size 9.");
|
|
|
|
|
|
|
|
if (rowMajor) {
|
|
|
|
m00 = matrix[0];
|
|
|
|
m01 = matrix[1];
|
|
|
|
m02 = matrix[2];
|
|
|
|
m10 = matrix[3];
|
|
|
|
m11 = matrix[4];
|
|
|
|
m12 = matrix[5];
|
|
|
|
m20 = matrix[6];
|
|
|
|
m21 = matrix[7];
|
|
|
|
m22 = matrix[8];
|
|
|
|
} else {
|
|
|
|
m00 = matrix[0];
|
|
|
|
m01 = matrix[3];
|
|
|
|
m02 = matrix[6];
|
|
|
|
m10 = matrix[1];
|
|
|
|
m11 = matrix[4];
|
|
|
|
m12 = matrix[7];
|
|
|
|
m20 = matrix[2];
|
|
|
|
m21 = matrix[5];
|
|
|
|
m22 = matrix[8];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>set</code> defines the values of the matrix based on a supplied
|
|
|
|
* <code>Quaternion</code>. It should be noted that all previous values will
|
|
|
|
* be overridden.
|
|
|
|
*
|
|
|
|
* @param quaternion the quaternion to create a rotational matrix from.
|
|
|
|
*/
|
|
|
|
public void set(Quaternion quaternion) {
|
|
|
|
quaternion.toRotationMatrix(this);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>loadIdentity</code> sets this matrix to the identity matrix. Where
|
|
|
|
* all values are zero except those along the diagonal which are one.
|
|
|
|
*/
|
|
|
|
public void loadIdentity() {
|
|
|
|
m01 = m02 = m10 = m12 = m20 = m21 = 0;
|
|
|
|
m00 = m11 = m22 = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @return true if this matrix is identity
|
|
|
|
*/
|
|
|
|
public boolean isIdentity() {
|
|
|
|
return (m00 == 1 && m01 == 0 && m02 == 0)
|
|
|
|
&& (m10 == 0 && m11 == 1 && m12 == 0)
|
|
|
|
&& (m20 == 0 && m21 == 0 && m22 == 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>fromAngleAxis</code> sets this matrix4f to the values specified by
|
|
|
|
* an angle and an axis of rotation. This method creates an object, so use
|
|
|
|
* fromAngleNormalAxis if your axis is already normalized.
|
|
|
|
*
|
|
|
|
* @param angle the angle to rotate (in radians).
|
|
|
|
* @param axis the axis of rotation.
|
|
|
|
*/
|
|
|
|
public void fromAngleAxis(float angle, Vector3f axis) {
|
|
|
|
Vector3f normAxis = axis.normalize();
|
|
|
|
fromAngleNormalAxis(angle, normAxis);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>fromAngleNormalAxis</code> sets this matrix4f to the values
|
|
|
|
* specified by an angle and a normalized axis of rotation.
|
|
|
|
*
|
|
|
|
* @param angle the angle to rotate (in radians).
|
|
|
|
* @param axis the axis of rotation (already normalized).
|
|
|
|
*/
|
|
|
|
public void fromAngleNormalAxis(float angle, Vector3f axis) {
|
|
|
|
float fCos = FastMath.cos(angle);
|
|
|
|
float fSin = FastMath.sin(angle);
|
|
|
|
float fOneMinusCos = ((float) 1.0) - fCos;
|
|
|
|
float fX2 = axis.x * axis.x;
|
|
|
|
float fY2 = axis.y * axis.y;
|
|
|
|
float fZ2 = axis.z * axis.z;
|
|
|
|
float fXYM = axis.x * axis.y * fOneMinusCos;
|
|
|
|
float fXZM = axis.x * axis.z * fOneMinusCos;
|
|
|
|
float fYZM = axis.y * axis.z * fOneMinusCos;
|
|
|
|
float fXSin = axis.x * fSin;
|
|
|
|
float fYSin = axis.y * fSin;
|
|
|
|
float fZSin = axis.z * fSin;
|
|
|
|
|
|
|
|
m00 = fX2 * fOneMinusCos + fCos;
|
|
|
|
m01 = fXYM - fZSin;
|
|
|
|
m02 = fXZM + fYSin;
|
|
|
|
m10 = fXYM + fZSin;
|
|
|
|
m11 = fY2 * fOneMinusCos + fCos;
|
|
|
|
m12 = fYZM - fXSin;
|
|
|
|
m20 = fXZM - fYSin;
|
|
|
|
m21 = fYZM + fXSin;
|
|
|
|
m22 = fZ2 * fOneMinusCos + fCos;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>mult</code> multiplies this matrix by a given matrix. The result
|
|
|
|
* matrix is returned as a new object. If the given matrix is null, a null
|
|
|
|
* matrix is returned.
|
|
|
|
*
|
|
|
|
* @param mat the matrix to multiply this matrix by.
|
|
|
|
* @return the result matrix.
|
|
|
|
*/
|
|
|
|
public Matrix3f mult(Matrix3f mat) {
|
|
|
|
return mult(mat, null);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>mult</code> multiplies this matrix by a given matrix. The result
|
|
|
|
* matrix is returned as a new object.
|
|
|
|
*
|
|
|
|
* @param mat the matrix to multiply this matrix by.
|
|
|
|
* @param product the matrix to store the result in. if null, a new matrix3f is
|
|
|
|
* created. It is safe for mat and product to be the same object.
|
|
|
|
* @return a matrix3f object containing the result of this operation
|
|
|
|
*/
|
|
|
|
public Matrix3f mult(Matrix3f mat, Matrix3f product) {
|
|
|
|
|
|
|
|
float temp00, temp01, temp02;
|
|
|
|
float temp10, temp11, temp12;
|
|
|
|
float temp20, temp21, temp22;
|
|
|
|
|
|
|
|
if (product == null)
|
|
|
|
product = new Matrix3f();
|
|
|
|
temp00 = m00 * mat.m00 + m01 * mat.m10 + m02 * mat.m20;
|
|
|
|
temp01 = m00 * mat.m01 + m01 * mat.m11 + m02 * mat.m21;
|
|
|
|
temp02 = m00 * mat.m02 + m01 * mat.m12 + m02 * mat.m22;
|
|
|
|
temp10 = m10 * mat.m00 + m11 * mat.m10 + m12 * mat.m20;
|
|
|
|
temp11 = m10 * mat.m01 + m11 * mat.m11 + m12 * mat.m21;
|
|
|
|
temp12 = m10 * mat.m02 + m11 * mat.m12 + m12 * mat.m22;
|
|
|
|
temp20 = m20 * mat.m00 + m21 * mat.m10 + m22 * mat.m20;
|
|
|
|
temp21 = m20 * mat.m01 + m21 * mat.m11 + m22 * mat.m21;
|
|
|
|
temp22 = m20 * mat.m02 + m21 * mat.m12 + m22 * mat.m22;
|
|
|
|
|
|
|
|
product.m00 = temp00;
|
|
|
|
product.m01 = temp01;
|
|
|
|
product.m02 = temp02;
|
|
|
|
product.m10 = temp10;
|
|
|
|
product.m11 = temp11;
|
|
|
|
product.m12 = temp12;
|
|
|
|
product.m20 = temp20;
|
|
|
|
product.m21 = temp21;
|
|
|
|
product.m22 = temp22;
|
|
|
|
|
|
|
|
return product;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>mult</code> multiplies this matrix by a given <code>Vector3f</code>
|
|
|
|
* object. The result vector is returned. If the given vector is null, null
|
|
|
|
* will be returned.
|
|
|
|
*
|
|
|
|
* @param vec the vector to multiply this matrix by.
|
|
|
|
* @return the result vector.
|
|
|
|
*/
|
|
|
|
public Vector3f mult(Vector3f vec) {
|
|
|
|
return mult(vec, null);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Multiplies this 3x3 matrix by the 1x3 Vector vec and stores the result in
|
|
|
|
* product.
|
|
|
|
*
|
|
|
|
* @param vec The Vector3f to multiply.
|
|
|
|
* @param product The Vector3f to store the result, it is safe for this to be
|
|
|
|
* the same as vec.
|
|
|
|
* @return The given product vector.
|
|
|
|
*/
|
|
|
|
public Vector3f mult(Vector3f vec, Vector3f product) {
|
|
|
|
|
|
|
|
if (null == product) {
|
|
|
|
product = new Vector3f();
|
|
|
|
}
|
|
|
|
|
|
|
|
float x = vec.x;
|
|
|
|
float y = vec.y;
|
|
|
|
float z = vec.z;
|
|
|
|
|
|
|
|
product.x = m00 * x + m01 * y + m02 * z;
|
|
|
|
product.y = m10 * x + m11 * y + m12 * z;
|
|
|
|
product.z = m20 * x + m21 * y + m22 * z;
|
|
|
|
return product;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>multLocal</code> multiplies this matrix internally by a given float
|
|
|
|
* scale factor.
|
|
|
|
*
|
|
|
|
* @param scale the value to scale by.
|
|
|
|
* @return this Matrix3f
|
|
|
|
*/
|
|
|
|
public Matrix3f multLocal(float scale) {
|
|
|
|
m00 *= scale;
|
|
|
|
m01 *= scale;
|
|
|
|
m02 *= scale;
|
|
|
|
m10 *= scale;
|
|
|
|
m11 *= scale;
|
|
|
|
m12 *= scale;
|
|
|
|
m20 *= scale;
|
|
|
|
m21 *= scale;
|
|
|
|
m22 *= scale;
|
|
|
|
return this;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>multLocal</code> multiplies this matrix by a given
|
|
|
|
* <code>Vector3f</code> object. The result vector is stored inside the
|
|
|
|
* passed vector, then returned . If the given vector is null, null will be
|
|
|
|
* returned.
|
|
|
|
*
|
|
|
|
* @param vec the vector to multiply this matrix by.
|
|
|
|
* @return The passed vector after multiplication
|
|
|
|
*/
|
|
|
|
public Vector3f multLocal(Vector3f vec) {
|
|
|
|
if (vec == null)
|
|
|
|
return null;
|
|
|
|
float x = vec.x;
|
|
|
|
float y = vec.y;
|
|
|
|
vec.x = m00 * x + m01 * y + m02 * vec.z;
|
|
|
|
vec.y = m10 * x + m11 * y + m12 * vec.z;
|
|
|
|
vec.z = m20 * x + m21 * y + m22 * vec.z;
|
|
|
|
return vec;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>mult</code> multiplies this matrix by a given matrix. The result
|
|
|
|
* matrix is saved in the current matrix. If the given matrix is null,
|
|
|
|
* nothing happens. The current matrix is returned. This is equivalent to
|
|
|
|
* this*=mat
|
|
|
|
*
|
|
|
|
* @param mat the matrix to multiply this matrix by.
|
|
|
|
* @return This matrix, after the multiplication
|
|
|
|
*/
|
|
|
|
public Matrix3f multLocal(Matrix3f mat) {
|
|
|
|
|
|
|
|
return mult(mat, this);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Transposes this matrix in place. Returns this matrix for chaining
|
|
|
|
*
|
|
|
|
* @return This matrix after transpose
|
|
|
|
* @throws Exception
|
|
|
|
*/
|
|
|
|
public Matrix3f transposeLocal() throws Exception {
|
|
|
|
float[] tmp = new float[9];
|
|
|
|
get(tmp, false);
|
|
|
|
set(tmp, true);
|
|
|
|
return this;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Inverts this matrix as a new Matrix3f.
|
|
|
|
*
|
|
|
|
* @return The new inverse matrix
|
|
|
|
*/
|
|
|
|
public Matrix3f invert() {
|
|
|
|
return invert(null);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Inverts this matrix and stores it in the given store.
|
|
|
|
*
|
|
|
|
* @return The store
|
|
|
|
*/
|
|
|
|
public Matrix3f invert(Matrix3f store) {
|
|
|
|
if (store == null)
|
|
|
|
store = new Matrix3f();
|
|
|
|
|
|
|
|
float det = determinant();
|
|
|
|
if (FastMath.abs(det) <= 0)
|
|
|
|
return store.zero();
|
|
|
|
|
|
|
|
store.m00 = m11 * m22 - m12 * m21;
|
|
|
|
store.m01 = m02 * m21 - m01 * m22;
|
|
|
|
store.m02 = m01 * m12 - m02 * m11;
|
|
|
|
store.m10 = m12 * m20 - m10 * m22;
|
|
|
|
store.m11 = m00 * m22 - m02 * m20;
|
|
|
|
store.m12 = m02 * m10 - m00 * m12;
|
|
|
|
store.m20 = m10 * m21 - m11 * m20;
|
|
|
|
store.m21 = m01 * m20 - m00 * m21;
|
|
|
|
store.m22 = m00 * m11 - m01 * m10;
|
|
|
|
|
|
|
|
store.multLocal(1f / det);
|
|
|
|
return store;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Inverts this matrix locally.
|
|
|
|
*
|
|
|
|
* @return this
|
|
|
|
*/
|
|
|
|
public Matrix3f invertLocal() {
|
|
|
|
float det = determinant();
|
|
|
|
if (FastMath.abs(det) <= FastMath.FLT_EPSILON)
|
|
|
|
return zero();
|
|
|
|
|
|
|
|
float f00 = m11 * m22 - m12 * m21;
|
|
|
|
float f01 = m02 * m21 - m01 * m22;
|
|
|
|
float f02 = m01 * m12 - m02 * m11;
|
|
|
|
float f10 = m12 * m20 - m10 * m22;
|
|
|
|
float f11 = m00 * m22 - m02 * m20;
|
|
|
|
float f12 = m02 * m10 - m00 * m12;
|
|
|
|
float f20 = m10 * m21 - m11 * m20;
|
|
|
|
float f21 = m01 * m20 - m00 * m21;
|
|
|
|
float f22 = m00 * m11 - m01 * m10;
|
|
|
|
|
|
|
|
m00 = f00;
|
|
|
|
m01 = f01;
|
|
|
|
m02 = f02;
|
|
|
|
m10 = f10;
|
|
|
|
m11 = f11;
|
|
|
|
m12 = f12;
|
|
|
|
m20 = f20;
|
|
|
|
m21 = f21;
|
|
|
|
m22 = f22;
|
|
|
|
|
|
|
|
multLocal(1f / det);
|
|
|
|
return this;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns a new matrix representing the adjoint of this matrix.
|
|
|
|
*
|
|
|
|
* @return The adjoint matrix
|
|
|
|
*/
|
|
|
|
public Matrix3f adjoint() {
|
|
|
|
return adjoint(null);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Places the adjoint of this matrix in store (creates store if null.)
|
|
|
|
*
|
|
|
|
* @param store The matrix to store the result in. If null, a new matrix is
|
|
|
|
* created.
|
|
|
|
* @return store
|
|
|
|
*/
|
|
|
|
public Matrix3f adjoint(Matrix3f store) {
|
|
|
|
if (store == null)
|
|
|
|
store = new Matrix3f();
|
|
|
|
|
|
|
|
store.m00 = m11 * m22 - m12 * m21;
|
|
|
|
store.m01 = m02 * m21 - m01 * m22;
|
|
|
|
store.m02 = m01 * m12 - m02 * m11;
|
|
|
|
store.m10 = m12 * m20 - m10 * m22;
|
|
|
|
store.m11 = m00 * m22 - m02 * m20;
|
|
|
|
store.m12 = m02 * m10 - m00 * m12;
|
|
|
|
store.m20 = m10 * m21 - m11 * m20;
|
|
|
|
store.m21 = m01 * m20 - m00 * m21;
|
|
|
|
store.m22 = m00 * m11 - m01 * m10;
|
|
|
|
|
|
|
|
return store;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>determinant</code> generates the determinate of this matrix.
|
|
|
|
*
|
|
|
|
* @return the determinate
|
|
|
|
*/
|
|
|
|
public float determinant() {
|
|
|
|
float fCo00 = m11 * m22 - m12 * m21;
|
|
|
|
float fCo10 = m12 * m20 - m10 * m22;
|
|
|
|
float fCo20 = m10 * m21 - m11 * m20;
|
|
|
|
return m00 * fCo00 + m01 * fCo10 + m02 * fCo20;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Sets all of the values in this matrix to zero.
|
|
|
|
*
|
|
|
|
* @return this matrix
|
|
|
|
*/
|
|
|
|
public Matrix3f zero() {
|
|
|
|
m00 = m01 = m02 = m10 = m11 = m12 = m20 = m21 = m22 = 0.0f;
|
|
|
|
return this;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>add</code> adds the values of a parameter matrix to this matrix.
|
|
|
|
*
|
|
|
|
* @param mat the matrix to add to this.
|
|
|
|
*/
|
|
|
|
public void add(Matrix3f mat) {
|
|
|
|
m00 += mat.m00;
|
|
|
|
m01 += mat.m01;
|
|
|
|
m02 += mat.m02;
|
|
|
|
m10 += mat.m10;
|
|
|
|
m11 += mat.m11;
|
|
|
|
m12 += mat.m12;
|
|
|
|
m20 += mat.m20;
|
|
|
|
m21 += mat.m21;
|
|
|
|
m22 += mat.m22;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>transpose</code> <b>locally</b> transposes this Matrix. This is
|
|
|
|
* inconsistent with general value vs local semantics, but is preserved for
|
|
|
|
* backwards compatibility. Use transposeNew() to transpose to a new object
|
|
|
|
* (value).
|
|
|
|
*
|
|
|
|
* @return this object for chaining.
|
|
|
|
* @throws Exception
|
|
|
|
*/
|
|
|
|
public Matrix3f transpose() throws Exception {
|
|
|
|
return transposeLocal();
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>transposeNew</code> returns a transposed version of this matrix.
|
|
|
|
*
|
|
|
|
* @return The new Matrix3f object.
|
|
|
|
*/
|
|
|
|
public Matrix3f transposeNew() {
|
|
|
|
return new Matrix3f(m00, m10, m20, m01, m11, m21, m02, m12, m22);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>toString</code> returns the string representation of this object.
|
|
|
|
* It is in a format of a 3x3 matrix. For example, an identity matrix would
|
|
|
|
* be represented by the following string. com.jme.math.Matrix3f <br>
|
|
|
|
* [<br>
|
|
|
|
* 1.0 0.0 0.0 <br>
|
|
|
|
* 0.0 1.0 0.0 <br>
|
|
|
|
* 0.0 0.0 1.0 <br>
|
|
|
|
* ]<br>
|
|
|
|
*
|
|
|
|
* @return the string representation of this object.
|
|
|
|
*/
|
|
|
|
@Override
|
|
|
|
public String toString() {
|
|
|
|
StringBuffer result = new StringBuffer("com.jme.math.Matrix3f\n[\n");
|
|
|
|
result.append(' ');
|
|
|
|
result.append(m00);
|
|
|
|
result.append(" ");
|
|
|
|
result.append(m01);
|
|
|
|
result.append(" ");
|
|
|
|
result.append(m02);
|
|
|
|
result.append(" \n");
|
|
|
|
result.append(' ');
|
|
|
|
result.append(m10);
|
|
|
|
result.append(" ");
|
|
|
|
result.append(m11);
|
|
|
|
result.append(" ");
|
|
|
|
result.append(m12);
|
|
|
|
result.append(" \n");
|
|
|
|
result.append(' ');
|
|
|
|
result.append(m20);
|
|
|
|
result.append(" ");
|
|
|
|
result.append(m21);
|
|
|
|
result.append(" ");
|
|
|
|
result.append(m22);
|
|
|
|
result.append(" \n]");
|
|
|
|
return result.toString();
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>hashCode</code> returns the hash code value as an integer and is
|
|
|
|
* supported for the benefit of hashing based collection classes such as
|
|
|
|
* Hashtable, HashMap, HashSet etc.
|
|
|
|
*
|
|
|
|
* @return the hashcode for this instance of Matrix4f.
|
|
|
|
* @see java.lang.Object#hashCode()
|
|
|
|
*/
|
|
|
|
@Override
|
|
|
|
public int hashCode() {
|
|
|
|
int hash = 37;
|
|
|
|
hash = 37 * hash + Float.floatToIntBits(m00);
|
|
|
|
hash = 37 * hash + Float.floatToIntBits(m01);
|
|
|
|
hash = 37 * hash + Float.floatToIntBits(m02);
|
|
|
|
|
|
|
|
hash = 37 * hash + Float.floatToIntBits(m10);
|
|
|
|
hash = 37 * hash + Float.floatToIntBits(m11);
|
|
|
|
hash = 37 * hash + Float.floatToIntBits(m12);
|
|
|
|
|
|
|
|
hash = 37 * hash + Float.floatToIntBits(m20);
|
|
|
|
hash = 37 * hash + Float.floatToIntBits(m21);
|
|
|
|
hash = 37 * hash + Float.floatToIntBits(m22);
|
|
|
|
|
|
|
|
return hash;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* are these two matrices the same? they are is they both have the same mXX
|
|
|
|
* values.
|
|
|
|
*
|
|
|
|
* @param o the object to compare for equality
|
|
|
|
* @return true if they are equal
|
|
|
|
*/
|
|
|
|
@Override
|
|
|
|
public boolean equals(Object o) {
|
|
|
|
if (!(o instanceof Matrix3f) || o == null) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (this == o) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
Matrix3f comp = (Matrix3f) o;
|
|
|
|
if (Float.compare(m00, comp.m00) != 0)
|
|
|
|
return false;
|
|
|
|
if (Float.compare(m01, comp.m01) != 0)
|
|
|
|
return false;
|
|
|
|
if (Float.compare(m02, comp.m02) != 0)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (Float.compare(m10, comp.m10) != 0)
|
|
|
|
return false;
|
|
|
|
if (Float.compare(m11, comp.m11) != 0)
|
|
|
|
return false;
|
|
|
|
if (Float.compare(m12, comp.m12) != 0)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (Float.compare(m20, comp.m20) != 0)
|
|
|
|
return false;
|
|
|
|
if (Float.compare(m21, comp.m21) != 0)
|
|
|
|
return false;
|
|
|
|
return Float.compare(m22, comp.m22) == 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* A function for creating a rotation matrix that rotates a vector called
|
|
|
|
* "start" into another vector called "end".
|
|
|
|
*
|
|
|
|
* @param start normalized non-zero starting vector
|
|
|
|
* @param end normalized non-zero ending vector
|
|
|
|
* @throws Exception
|
|
|
|
* @see "Tomas Miller, John Hughes \"Efficiently Building a Matrix to Rotate
|
|
|
|
* \ One Vector to Another\" Journal of Graphics Tools, 4(4):1-4, 1999"
|
|
|
|
*/
|
|
|
|
public void fromStartEndVectors(Vector3f start, Vector3f end)
|
|
|
|
throws Exception {
|
|
|
|
Vector3f v = new Vector3f();
|
|
|
|
float e, h, f;
|
|
|
|
|
|
|
|
start.cross(end, v);
|
|
|
|
e = start.dot(end);
|
|
|
|
f = (e < 0) ? -e : e;
|
|
|
|
|
|
|
|
// if "from" and "to" vectors are nearly parallel
|
|
|
|
if (f > 1.0f - FastMath.ZERO_TOLERANCE) {
|
|
|
|
Vector3f u = new Vector3f();
|
|
|
|
Vector3f x = new Vector3f();
|
|
|
|
float c1, c2, c3; /* coefficients for later use */
|
|
|
|
int i, j;
|
|
|
|
|
|
|
|
x.x = (start.x > 0.0) ? start.x : -start.x;
|
|
|
|
x.y = (start.y > 0.0) ? start.y : -start.y;
|
|
|
|
x.z = (start.z > 0.0) ? start.z : -start.z;
|
|
|
|
|
|
|
|
if (x.x < x.y) {
|
|
|
|
if (x.x < x.z) {
|
|
|
|
x.x = 1.0f;
|
|
|
|
x.y = x.z = 0.0f;
|
|
|
|
} else {
|
|
|
|
x.z = 1.0f;
|
|
|
|
x.x = x.y = 0.0f;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (x.y < x.z) {
|
|
|
|
x.y = 1.0f;
|
|
|
|
x.x = x.z = 0.0f;
|
|
|
|
} else {
|
|
|
|
x.z = 1.0f;
|
|
|
|
x.x = x.y = 0.0f;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
u.x = x.x - start.x;
|
|
|
|
u.y = x.y - start.y;
|
|
|
|
u.z = x.z - start.z;
|
|
|
|
v.x = x.x - end.x;
|
|
|
|
v.y = x.y - end.y;
|
|
|
|
v.z = x.z - end.z;
|
|
|
|
|
|
|
|
c1 = 2.0f / u.dot(u);
|
|
|
|
c2 = 2.0f / v.dot(v);
|
|
|
|
c3 = c1 * c2 * u.dot(v);
|
|
|
|
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
|
|
for (j = 0; j < 3; j++) {
|
|
|
|
float val = -c1 * u.get(i) * u.get(j) - c2 * v.get(i)
|
|
|
|
* v.get(j) + c3 * v.get(i) * u.get(j);
|
|
|
|
set(i, j, val);
|
|
|
|
}
|
|
|
|
float val = get(i, i);
|
|
|
|
set(i, i, val + 1.0f);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// the most common case, unless "start"="end", or "start"=-"end"
|
|
|
|
float hvx, hvz, hvxy, hvxz, hvyz;
|
|
|
|
h = 1.0f / (1.0f + e);
|
|
|
|
hvx = h * v.x;
|
|
|
|
hvz = h * v.z;
|
|
|
|
hvxy = hvx * v.y;
|
|
|
|
hvxz = hvx * v.z;
|
|
|
|
hvyz = hvz * v.y;
|
|
|
|
set(0, 0, e + hvx * v.x);
|
|
|
|
set(0, 1, hvxy - v.z);
|
|
|
|
set(0, 2, hvxz + v.y);
|
|
|
|
|
|
|
|
set(1, 0, hvxy + v.z);
|
|
|
|
set(1, 1, e + h * v.y * v.y);
|
|
|
|
set(1, 2, hvyz - v.x);
|
|
|
|
|
|
|
|
set(2, 0, hvxz - v.y);
|
|
|
|
set(2, 1, hvyz + v.x);
|
|
|
|
set(2, 2, e + hvz * v.z);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>scale</code> scales the operation performed by this matrix on a
|
|
|
|
* per-component basis.
|
|
|
|
*
|
|
|
|
* @param scale The scale applied to each of the X, Y and Z output values.
|
|
|
|
*/
|
|
|
|
public void scale(Vector3f scale) {
|
|
|
|
m00 *= scale.x;
|
|
|
|
m10 *= scale.x;
|
|
|
|
m20 *= scale.x;
|
|
|
|
m01 *= scale.y;
|
|
|
|
m11 *= scale.y;
|
|
|
|
m21 *= scale.y;
|
|
|
|
m02 *= scale.z;
|
|
|
|
m12 *= scale.z;
|
|
|
|
m22 *= scale.z;
|
|
|
|
}
|
|
|
|
|
|
|
|
@Override
|
|
|
|
public Matrix3f clone() {
|
|
|
|
try {
|
|
|
|
return (Matrix3f) super.clone();
|
|
|
|
} catch (CloneNotSupportedException e) {
|
|
|
|
Logger.error(e);
|
|
|
|
throw new AssertionError(); // can not happen
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|