// • ▌ ▄ ·. ▄▄▄· ▄▄ • ▪ ▄▄· ▄▄▄▄· ▄▄▄· ▐▄▄▄ ▄▄▄ . // ·██ ▐███▪▐█ ▀█ ▐█ ▀ ▪██ ▐█ ▌▪▐█ ▀█▪▐█ ▀█ •█▌ ▐█▐▌· // ▐█ ▌▐▌▐█·▄█▀▀█ ▄█ ▀█▄▐█·██ ▄▄▐█▀▀█▄▄█▀▀█ ▐█▐ ▐▌▐▀▀▀ // ██ ██▌▐█▌▐█ ▪▐▌▐█▄▪▐█▐█▌▐███▌██▄▪▐█▐█ ▪▐▌██▐ █▌▐█▄▄▌ // ▀▀ █▪▀▀▀ ▀ ▀ ·▀▀▀▀ ▀▀▀·▀▀▀ ·▀▀▀▀ ▀ ▀ ▀▀ █▪ ▀▀▀ // Magicbane Emulator Project © 2013 - 2022 // www.magicbane.com package engine.math; /** * Vector2f defines a Vector for a two float value vector. */ public class Vector2f { /** * the x value of the vector. */ public float x; /** * the y value of the vector. */ public float y; /** * Creates a Vector2f with the given initial x and y values. * * @param x The x value of this Vector2f. * @param y The y value of this Vector2f. */ public Vector2f(float x, float y) { this.x = x; this.y = y; } /** * Creates a Vector2f with x and y set to 0. Equivalent to Vector2f(0,0). */ public Vector2f() { x = y = 0; } /** * Creates a new Vector2f that contains the passed vector's information * * @param vector2f The vector to copy */ public Vector2f(Vector2f vector2f) { this.x = vector2f.x; this.y = vector2f.y; } /** * Check a vector... if it is null or its floats are NaN or infinite, return * false. Else return true. * * @param vector the vector to check * @return true or false as stated above. */ public static boolean isValidVector(Vector2f vector) { if (vector == null) return false; if (Float.isNaN(vector.x) || Float.isNaN(vector.y)) return false; return !Float.isInfinite(vector.x) && !Float.isInfinite(vector.y); } public static boolean isZeroVector(Vector2f vector) { return (vector.x == 0) && (vector.y == 0); } /** * set the x and y values of the vector * * @param x the x value of the vector. * @param y the y value of the vector. * @return this vector */ public Vector2f set(float x, float y) { this.x = x; this.y = y; return this; } /** * set the x and y values of the vector from another vector * * @param vec the vector to copy from * @return this vector */ public Vector2f set(Vector2f vec) { this.x = vec.x; this.y = vec.y; return this; } /** * add adds a provided vector to this vector creating a * resultant vector which is returned. If the provided vector is null, null * is returned. * * @param vec the vector to add to this. * @return the resultant vector. */ public Vector2f add(Vector2f vec) { if (null == vec) { return null; } return new Vector2f(x + vec.x, y + vec.y); } /** * addLocal adds a provided vector to this vector internally, * and returns a handle to this vector for easy chaining of calls. If the * provided vector is null, null is returned. * * @param vec the vector to add to this vector. * @return this */ public Vector2f addLocal(Vector2f vec) { if (null == vec) { return null; } x += vec.x; y += vec.y; return this; } /** * addLocal adds the provided values to this vector internally, * and returns a handle to this vector for easy chaining of calls. * * @param addX value to add to x * @param addY value to add to y * @return this */ public Vector2f addLocal(float addX, float addY) { x += addX; y += addY; return this; } /** * add adds this vector by vec and stores the * result in result. * * @param vec The vector to add. * @param result The vector to store the result in. * @return The result vector, after adding. */ public Vector2f add(Vector2f vec, Vector2f result) { if (null == vec) { return null; } if (result == null) result = new Vector2f(); result.x = x + vec.x; result.y = y + vec.y; return result; } /** * dot calculates the dot product of this vector with a * provided vector. If the provided vector is null, 0 is returned. * * @param vec the vector to dot with this vector. * @return the resultant dot product of this vector and a given vector. */ public float dot(Vector2f vec) { if (null == vec) { return 0; } return x * vec.x + y * vec.y; } /** * cross calculates the cross product of this vector with a * parameter vector v. * * @param v the vector to take the cross product of with this. * @return the cross product vector. */ public Vector3f cross(Vector2f v) { return new Vector3f(0, 0, determinant(v)); } public float determinant(Vector2f v) { return (x * v.y) - (y * v.x); } /** * Sets this vector to the interpolation by changeAmnt from this to the * finalVec this=(1-changeAmnt)*this + changeAmnt * finalVec * * @param finalVec The final vector to interpolate towards * @param changeAmnt An amount between 0.0 - 1.0 representing a percentage change * from this towards finalVec */ public void interpolate(Vector2f finalVec, float changeAmnt) { this.x = (1 - changeAmnt) * this.x + changeAmnt * finalVec.x; this.y = (1 - changeAmnt) * this.y + changeAmnt * finalVec.y; } /** * Sets this vector to the interpolation by changeAmnt from beginVec to * finalVec this=(1-changeAmnt)*beginVec + changeAmnt * finalVec * * @param beginVec The begining vector (delta=0) * @param finalVec The final vector to interpolate towards (delta=1) * @param changeAmnt An amount between 0.0 - 1.0 representing a precentage change * from beginVec towards finalVec */ public void interpolate(Vector2f beginVec, Vector2f finalVec, float changeAmnt) { this.x = (1 - changeAmnt) * beginVec.x + changeAmnt * finalVec.x; this.y = (1 - changeAmnt) * beginVec.y + changeAmnt * finalVec.y; } /** * length calculates the magnitude of this vector. * * @return the length or magnitude of the vector. */ public float length() { return FastMath.sqrt(lengthSquared()); } /** * lengthSquared calculates the squared value of the magnitude * of the vector. * * @return the magnitude squared of the vector. */ public float lengthSquared() { return x * x + y * y; } /** * distanceSquared calculates the distance squared between this * vector and vector v. * * @param v the second vector to determine the distance squared. * @return the distance squared between the two vectors. */ public float distanceSquared(Vector2f v) { double dx = x - v.x; double dy = y - v.y; return (float) (dx * dx + dy * dy); } /** * distanceSquared calculates the distance squared between this * vector and vector v. * * @return the distance squared between the two vectors. */ public float distanceSquared(float otherX, float otherY) { double dx = x - otherX; double dy = y - otherY; return (float) (dx * dx + dy * dy); } /** * distance calculates the distance between this vector and * vector v. * * @param v the second vector to determine the distance. * @return the distance between the two vectors. */ public float distance(Vector2f v) { return FastMath.sqrt(distanceSquared(v)); } /** * mult multiplies this vector by a scalar. The resultant * vector is returned. * * @param scalar the value to multiply this vector by. * @return the new vector. */ public Vector2f mult(float scalar) { return new Vector2f(x * scalar, y * scalar); } /** * multLocal multiplies this vector by a scalar internally, and * returns a handle to this vector for easy chaining of calls. * * @param scalar the value to multiply this vector by. * @return this */ public Vector2f multLocal(float scalar) { x *= scalar; y *= scalar; return this; } /** * multLocal multiplies a provided vector to this vector * internally, and returns a handle to this vector for easy chaining of * calls. If the provided vector is null, null is returned. * * @param vec the vector to mult to this vector. * @return this */ public Vector2f multLocal(Vector2f vec) { if (null == vec) { return null; } x *= vec.x; y *= vec.y; return this; } /** * Multiplies this Vector2f's x and y by the scalar and stores the result in * product. The result is returned for chaining. Similar to * product=this*scalar; * * @param scalar The scalar to multiply by. * @param product The vector2f to store the result in. * @return product, after multiplication. */ public Vector2f mult(float scalar, Vector2f product) { if (null == product) { product = new Vector2f(); } product.x = x * scalar; product.y = y * scalar; return product; } /** * divide divides the values of this vector by a scalar and * returns the result. The values of this vector remain untouched. * * @param scalar the value to divide this vectors attributes by. * @return the result Vector. */ public Vector2f divide(float scalar) { return new Vector2f(x / scalar, y / scalar); } /** * divideLocal divides this vector by a scalar internally, and * returns a handle to this vector for easy chaining of calls. Dividing by * zero will result in an exception. * * @param scalar the value to divides this vector by. * @return this */ public Vector2f divideLocal(float scalar) { x /= scalar; y /= scalar; return this; } /** * negate returns the negative of this vector. All values are * negated and set to a new vector. * * @return the negated vector. */ public Vector2f negate() { return new Vector2f(-x, -y); } /** * negateLocal negates the internal values of this vector. * * @return this. */ public Vector2f negateLocal() { x = -x; y = -y; return this; } /** * subtract subtracts the values of a given vector from those * of this vector creating a new vector object. If the provided vector is * null, an exception is thrown. * * @param vec the vector to subtract from this vector. * @return the result vector. */ public Vector2f subtract(Vector2f vec) { return subtract(vec, null); } /** * subtract subtracts the values of a given vector from those * of this vector storing the result in the given vector object. If the * provided vector is null, an exception is thrown. * * @param vec the vector to subtract from this vector. * @param store the vector to store the result in. It is safe for this to be * the same as vec. If null, a new vector is created. * @return the result vector. */ public Vector2f subtract(Vector2f vec, Vector2f store) { if (store == null) store = new Vector2f(); store.x = x - vec.x; store.y = y - vec.y; return store; } /** * subtract subtracts the given x,y values from those of this * vector creating a new vector object. * * @param valX value to subtract from x * @param valY value to subtract from y * @return this */ public Vector2f subtract(float valX, float valY) { return new Vector2f(x - valX, y - valY); } /** * subtractLocal subtracts a provided vector to this vector * internally, and returns a handle to this vector for easy chaining of * calls. If the provided vector is null, null is returned. * * @param vec the vector to subtract * @return this */ public Vector2f subtractLocal(Vector2f vec) { if (null == vec) { return null; } x -= vec.x; y -= vec.y; return this; } /** * subtractLocal subtracts the provided values from this vector * internally, and returns a handle to this vector for easy chaining of * calls. * * @param valX value to subtract from x * @param valY value to subtract from y * @return this */ public Vector2f subtractLocal(float valX, float valY) { x -= valX; y -= valY; return this; } /** * normalize returns the unit vector of this vector. * * @return unit vector of this vector. */ public Vector2f normalize() { float length = length(); if (length != 0) { return divide(length); } return divide(1); } /** * normalizeLocal makes this vector into a unit vector of * itself. * * @return this. */ public Vector2f normalizeLocal() { float length = length(); if (length != 0) { return divideLocal(length); } return divideLocal(1); } /** * smallestAngleBetween returns (in radians) the minimum angle * between two vectors. It is assumed that both this vector and the given * vector are unit vectors (iow, normalized). * * @param otherVector a unit vector to find the angle against * @return the angle in radians. */ public float smallestAngleBetween(Vector2f otherVector) { float dotProduct = dot(otherVector); return FastMath.acos(dotProduct); } /** * angleBetween returns (in radians) the angle required to * rotate a ray represented by this vector to lie colinear to a ray * described by the given vector. It is assumed that both this vector and * the given vector are unit vectors (iow, normalized). * * @param otherVector the "destination" unit vector * @return the angle in radians. */ public float angleBetween(Vector2f otherVector) { return FastMath.atan2(otherVector.y, otherVector.x) - FastMath.atan2(y, x); } public float getX() { return x; } public void setX(float x) { this.x = x; } public float getY() { return y; } public void setY(float y) { this.y = y; } /** * getAngle returns (in radians) the angle represented by this * Vector2f as expressed by a conversion from rectangular coordinates ( * xy) to polar coordinates * (r, theta). * * @return the angle in radians. [-pi, pi) */ public float getAngle() { return -FastMath.atan2(y, x); } /** * zero resets this vector's data to zero internally. */ public void zero() { x = y = 0; } @Override public Vector2f clone() { try { return (Vector2f) super.clone(); } catch (CloneNotSupportedException e) { throw new AssertionError(); // can not happen } } /** * Saves this Vector2f into the given float[] object. * * @param floats The float[] to take this Vector2f. If null, a new float[2] is * created. * @return The array, with X, Y float values in that order */ public float[] toArray(float[] floats) { if (floats == null) { floats = new float[2]; } floats[0] = x; floats[1] = y; return floats; } /** * are these two vectors the same? they are is they both have the same x and * y values. * * @param o the object to compare for equality * @return true if they are equal */ @Override public boolean equals(Object o) { if (!(o instanceof Vector2f)) { return false; } if (this == o) { return true; } Vector2f comp = (Vector2f) o; if (Float.compare(x, comp.x) != 0) return false; return Float.compare(y, comp.y) == 0; } public void rotateAroundOrigin(float angle, boolean cw) { if (cw) angle = -angle; float newX = FastMath.cos(angle) * x - FastMath.sin(angle) * y; float newY = FastMath.sin(angle) * x + FastMath.cos(angle) * y; x = newX; y = newY; } public synchronized float getLat() { return x; } public synchronized void setLat(float lat) { this.x = lat; } public synchronized float getLong() { return y; } public synchronized void setLong(float lon) { this.y = lon; } }