|
|
|
// • ▌ ▄ ·. ▄▄▄· ▄▄ • ▪ ▄▄· ▄▄▄▄· ▄▄▄· ▐▄▄▄ ▄▄▄ .
|
|
|
|
// ·██ ▐███▪▐█ ▀█ ▐█ ▀ ▪██ ▐█ ▌▪▐█ ▀█▪▐█ ▀█ •█▌ ▐█▐▌·
|
|
|
|
// ▐█ ▌▐▌▐█·▄█▀▀█ ▄█ ▀█▄▐█·██ ▄▄▐█▀▀█▄▄█▀▀█ ▐█▐ ▐▌▐▀▀▀
|
|
|
|
// ██ ██▌▐█▌▐█ ▪▐▌▐█▄▪▐█▐█▌▐███▌██▄▪▐█▐█ ▪▐▌██▐ █▌▐█▄▄▌
|
|
|
|
// ▀▀ █▪▀▀▀ ▀ ▀ ·▀▀▀▀ ▀▀▀·▀▀▀ ·▀▀▀▀ ▀ ▀ ▀▀ █▪ ▀▀▀
|
|
|
|
// Magicbane Emulator Project © 2013 - 2022
|
|
|
|
// www.magicbane.com
|
|
|
|
|
|
|
|
package engine.math;
|
|
|
|
|
|
|
|
import org.pmw.tinylog.Logger;
|
|
|
|
|
|
|
|
import java.nio.FloatBuffer;
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>Matrix4f</code> defines and maintains a 4x4 matrix in row major order.
|
|
|
|
* This matrix is intended for use in a translation and rotational capacity. It
|
|
|
|
* provides convenience methods for creating the matrix from a multitude of
|
|
|
|
* sources.
|
|
|
|
* <p>
|
|
|
|
* Matrices are stored assuming column vectors on the right, with the
|
|
|
|
* translation in the rightmost column. Element numbering is row,column, so m03
|
|
|
|
* is the zeroth row, third column, which is the "x" translation part. This
|
|
|
|
* means that the implicit storage order is column major. However, the get() and
|
|
|
|
* set() functions on float arrays default to row major order!
|
|
|
|
*/
|
|
|
|
public class Matrix4f {
|
|
|
|
|
|
|
|
public float m00, m01, m02, m03;
|
|
|
|
|
|
|
|
public float m10, m11, m12, m13;
|
|
|
|
|
|
|
|
public float m20, m21, m22, m23;
|
|
|
|
|
|
|
|
public float m30, m31, m32, m33;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Constructor instantiates a new <code>Matrix</code> that is set to the
|
|
|
|
* identity matrix.
|
|
|
|
*/
|
|
|
|
public Matrix4f() {
|
|
|
|
loadIdentity();
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* constructs a matrix with the given values.
|
|
|
|
*/
|
|
|
|
public Matrix4f(float m00, float m01, float m02, float m03, float m10, float m11, float m12, float m13, float m20, float m21,
|
|
|
|
float m22, float m23, float m30, float m31, float m32, float m33) {
|
|
|
|
|
|
|
|
this.m00 = m00;
|
|
|
|
this.m01 = m01;
|
|
|
|
this.m02 = m02;
|
|
|
|
this.m03 = m03;
|
|
|
|
this.m10 = m10;
|
|
|
|
this.m11 = m11;
|
|
|
|
this.m12 = m12;
|
|
|
|
this.m13 = m13;
|
|
|
|
this.m20 = m20;
|
|
|
|
this.m21 = m21;
|
|
|
|
this.m22 = m22;
|
|
|
|
this.m23 = m23;
|
|
|
|
this.m30 = m30;
|
|
|
|
this.m31 = m31;
|
|
|
|
this.m32 = m32;
|
|
|
|
this.m33 = m33;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Create a new Matrix4f, given data in column-major format.
|
|
|
|
*
|
|
|
|
* @param array An array of 16 floats in column-major format (translation in
|
|
|
|
* elements 12, 13 and 14).
|
|
|
|
* @throws Exception
|
|
|
|
*/
|
|
|
|
public Matrix4f(float[] array) throws Exception {
|
|
|
|
set(array, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Constructor instantiates a new <code>Matrix</code> that is set to the
|
|
|
|
* provided matrix. This constructor copies a given Matrix. If the provided
|
|
|
|
* matrix is null, the constructor sets the matrix to the identity.
|
|
|
|
*
|
|
|
|
* @param mat the matrix to copy.
|
|
|
|
*/
|
|
|
|
public Matrix4f(Matrix4f mat) {
|
|
|
|
copy(mat);
|
|
|
|
}
|
|
|
|
|
|
|
|
static boolean equalIdentity(Matrix4f mat) {
|
|
|
|
if (Math.abs(mat.m00 - 1) > 1e-4)
|
|
|
|
return false;
|
|
|
|
if (Math.abs(mat.m11 - 1) > 1e-4)
|
|
|
|
return false;
|
|
|
|
if (Math.abs(mat.m22 - 1) > 1e-4)
|
|
|
|
return false;
|
|
|
|
if (Math.abs(mat.m33 - 1) > 1e-4)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (Math.abs(mat.m01) > 1e-4)
|
|
|
|
return false;
|
|
|
|
if (Math.abs(mat.m02) > 1e-4)
|
|
|
|
return false;
|
|
|
|
if (Math.abs(mat.m03) > 1e-4)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (Math.abs(mat.m10) > 1e-4)
|
|
|
|
return false;
|
|
|
|
if (Math.abs(mat.m12) > 1e-4)
|
|
|
|
return false;
|
|
|
|
if (Math.abs(mat.m13) > 1e-4)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (Math.abs(mat.m20) > 1e-4)
|
|
|
|
return false;
|
|
|
|
if (Math.abs(mat.m21) > 1e-4)
|
|
|
|
return false;
|
|
|
|
if (Math.abs(mat.m23) > 1e-4)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (Math.abs(mat.m30) > 1e-4)
|
|
|
|
return false;
|
|
|
|
if (Math.abs(mat.m31) > 1e-4)
|
|
|
|
return false;
|
|
|
|
return !(Math.abs(mat.m32) > 1e-4);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>copy</code> transfers the contents of a given matrix to this
|
|
|
|
* matrix. If a null matrix is supplied, this matrix is set to the identity
|
|
|
|
* matrix.
|
|
|
|
*
|
|
|
|
* @param matrix the matrix to copy.
|
|
|
|
*/
|
|
|
|
public void copy(Matrix4f matrix) {
|
|
|
|
if (null == matrix) {
|
|
|
|
loadIdentity();
|
|
|
|
} else {
|
|
|
|
m00 = matrix.m00;
|
|
|
|
m01 = matrix.m01;
|
|
|
|
m02 = matrix.m02;
|
|
|
|
m03 = matrix.m03;
|
|
|
|
m10 = matrix.m10;
|
|
|
|
m11 = matrix.m11;
|
|
|
|
m12 = matrix.m12;
|
|
|
|
m13 = matrix.m13;
|
|
|
|
m20 = matrix.m20;
|
|
|
|
m21 = matrix.m21;
|
|
|
|
m22 = matrix.m22;
|
|
|
|
m23 = matrix.m23;
|
|
|
|
m30 = matrix.m30;
|
|
|
|
m31 = matrix.m31;
|
|
|
|
m32 = matrix.m32;
|
|
|
|
m33 = matrix.m33;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>get</code> retrieves the values of this object into a float array
|
|
|
|
* in row-major order.
|
|
|
|
*
|
|
|
|
* @param matrix the matrix to set the values into.
|
|
|
|
* @throws Exception
|
|
|
|
*/
|
|
|
|
public void get(float[] matrix) throws Exception {
|
|
|
|
get(matrix, true);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>set</code> retrieves the values of this object into a float array.
|
|
|
|
*
|
|
|
|
* @param matrix the matrix to set the values into.
|
|
|
|
* @param rowMajor whether the outgoing data is in row or column major order.
|
|
|
|
* @throws Exception
|
|
|
|
*/
|
|
|
|
public void get(float[] matrix, boolean rowMajor) throws Exception {
|
|
|
|
if (matrix.length != 16)
|
|
|
|
throw new Exception("Array must be of size 16.");
|
|
|
|
|
|
|
|
if (rowMajor) {
|
|
|
|
matrix[0] = m00;
|
|
|
|
matrix[1] = m01;
|
|
|
|
matrix[2] = m02;
|
|
|
|
matrix[3] = m03;
|
|
|
|
matrix[4] = m10;
|
|
|
|
matrix[5] = m11;
|
|
|
|
matrix[6] = m12;
|
|
|
|
matrix[7] = m13;
|
|
|
|
matrix[8] = m20;
|
|
|
|
matrix[9] = m21;
|
|
|
|
matrix[10] = m22;
|
|
|
|
matrix[11] = m23;
|
|
|
|
matrix[12] = m30;
|
|
|
|
matrix[13] = m31;
|
|
|
|
matrix[14] = m32;
|
|
|
|
matrix[15] = m33;
|
|
|
|
} else {
|
|
|
|
matrix[0] = m00;
|
|
|
|
matrix[4] = m01;
|
|
|
|
matrix[8] = m02;
|
|
|
|
matrix[12] = m03;
|
|
|
|
matrix[1] = m10;
|
|
|
|
matrix[5] = m11;
|
|
|
|
matrix[9] = m12;
|
|
|
|
matrix[13] = m13;
|
|
|
|
matrix[2] = m20;
|
|
|
|
matrix[6] = m21;
|
|
|
|
matrix[10] = m22;
|
|
|
|
matrix[14] = m23;
|
|
|
|
matrix[3] = m30;
|
|
|
|
matrix[7] = m31;
|
|
|
|
matrix[11] = m32;
|
|
|
|
matrix[15] = m33;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>get</code> retrieves a value from the matrix at the given position.
|
|
|
|
* If the position is invalid a <code>Exception</code> is thrown.
|
|
|
|
*
|
|
|
|
* @param i the row index.
|
|
|
|
* @param j the column index.
|
|
|
|
* @return the value at (i, j).
|
|
|
|
* @throws Exception
|
|
|
|
*/
|
|
|
|
public float get(int i, int j) throws Exception {
|
|
|
|
switch (i) {
|
|
|
|
case 0:
|
|
|
|
switch (j) {
|
|
|
|
case 0:
|
|
|
|
return m00;
|
|
|
|
case 1:
|
|
|
|
return m01;
|
|
|
|
case 2:
|
|
|
|
return m02;
|
|
|
|
case 3:
|
|
|
|
return m03;
|
|
|
|
}
|
|
|
|
case 1:
|
|
|
|
switch (j) {
|
|
|
|
case 0:
|
|
|
|
return m10;
|
|
|
|
case 1:
|
|
|
|
return m11;
|
|
|
|
case 2:
|
|
|
|
return m12;
|
|
|
|
case 3:
|
|
|
|
return m13;
|
|
|
|
}
|
|
|
|
case 2:
|
|
|
|
switch (j) {
|
|
|
|
case 0:
|
|
|
|
return m20;
|
|
|
|
case 1:
|
|
|
|
return m21;
|
|
|
|
case 2:
|
|
|
|
return m22;
|
|
|
|
case 3:
|
|
|
|
return m23;
|
|
|
|
}
|
|
|
|
case 3:
|
|
|
|
switch (j) {
|
|
|
|
case 0:
|
|
|
|
return m30;
|
|
|
|
case 1:
|
|
|
|
return m31;
|
|
|
|
case 2:
|
|
|
|
return m32;
|
|
|
|
case 3:
|
|
|
|
return m33;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
throw new Exception("Invalid indices into matrix.");
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>getColumn</code> returns one of three columns specified by the
|
|
|
|
* parameter. This column is returned as a float array of length 4.
|
|
|
|
*
|
|
|
|
* @param i the column to retrieve. Must be between 0 and 3.
|
|
|
|
* @return the column specified by the index.
|
|
|
|
* @throws Exception
|
|
|
|
*/
|
|
|
|
public float[] getColumn(int i) throws Exception {
|
|
|
|
return getColumn(i, null);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>getColumn</code> returns one of three columns specified by the
|
|
|
|
* parameter. This column is returned as a float[4].
|
|
|
|
*
|
|
|
|
* @param i the column to retrieve. Must be between 0 and 3.
|
|
|
|
* @param store the float array to store the result in. if null, a new one is
|
|
|
|
* created.
|
|
|
|
* @return the column specified by the index.
|
|
|
|
*/
|
|
|
|
public float[] getColumn(int i, float[] store) throws Exception {
|
|
|
|
if (store == null)
|
|
|
|
store = new float[4];
|
|
|
|
switch (i) {
|
|
|
|
case 0:
|
|
|
|
store[0] = m00;
|
|
|
|
store[1] = m10;
|
|
|
|
store[2] = m20;
|
|
|
|
store[3] = m30;
|
|
|
|
break;
|
|
|
|
case 1:
|
|
|
|
store[0] = m01;
|
|
|
|
store[1] = m11;
|
|
|
|
store[2] = m21;
|
|
|
|
store[3] = m31;
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
store[0] = m02;
|
|
|
|
store[1] = m12;
|
|
|
|
store[2] = m22;
|
|
|
|
store[3] = m32;
|
|
|
|
break;
|
|
|
|
case 3:
|
|
|
|
store[0] = m03;
|
|
|
|
store[1] = m13;
|
|
|
|
store[2] = m23;
|
|
|
|
store[3] = m33;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
throw new Exception("Invalid column index. " + i);
|
|
|
|
}
|
|
|
|
return store;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>setColumn</code> sets a particular column of this matrix to that
|
|
|
|
* represented by the provided vector.
|
|
|
|
*
|
|
|
|
* @param i the column to set.
|
|
|
|
* @param column the data to set.
|
|
|
|
*/
|
|
|
|
public void setColumn(int i, float[] column) throws Exception {
|
|
|
|
|
|
|
|
if (column == null) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
switch (i) {
|
|
|
|
case 0:
|
|
|
|
m00 = column[0];
|
|
|
|
m10 = column[1];
|
|
|
|
m20 = column[2];
|
|
|
|
m30 = column[3];
|
|
|
|
break;
|
|
|
|
case 1:
|
|
|
|
m01 = column[0];
|
|
|
|
m11 = column[1];
|
|
|
|
m21 = column[2];
|
|
|
|
m31 = column[3];
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
m02 = column[0];
|
|
|
|
m12 = column[1];
|
|
|
|
m22 = column[2];
|
|
|
|
m32 = column[3];
|
|
|
|
break;
|
|
|
|
case 3:
|
|
|
|
m03 = column[0];
|
|
|
|
m13 = column[1];
|
|
|
|
m23 = column[2];
|
|
|
|
m33 = column[3];
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
throw new Exception("Invalid column index. " + i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>set</code> places a given value into the matrix at the given
|
|
|
|
* position. If the position is invalid a <code>Exception</code> is thrown.
|
|
|
|
*
|
|
|
|
* @param i the row index.
|
|
|
|
* @param j the column index.
|
|
|
|
* @param value the value for (i, j).
|
|
|
|
*/
|
|
|
|
public void set(int i, int j, float value) throws Exception {
|
|
|
|
switch (i) {
|
|
|
|
case 0:
|
|
|
|
switch (j) {
|
|
|
|
case 0:
|
|
|
|
m00 = value;
|
|
|
|
return;
|
|
|
|
case 1:
|
|
|
|
m01 = value;
|
|
|
|
return;
|
|
|
|
case 2:
|
|
|
|
m02 = value;
|
|
|
|
return;
|
|
|
|
case 3:
|
|
|
|
m03 = value;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
case 1:
|
|
|
|
switch (j) {
|
|
|
|
case 0:
|
|
|
|
m10 = value;
|
|
|
|
return;
|
|
|
|
case 1:
|
|
|
|
m11 = value;
|
|
|
|
return;
|
|
|
|
case 2:
|
|
|
|
m12 = value;
|
|
|
|
return;
|
|
|
|
case 3:
|
|
|
|
m13 = value;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
case 2:
|
|
|
|
switch (j) {
|
|
|
|
case 0:
|
|
|
|
m20 = value;
|
|
|
|
return;
|
|
|
|
case 1:
|
|
|
|
m21 = value;
|
|
|
|
return;
|
|
|
|
case 2:
|
|
|
|
m22 = value;
|
|
|
|
return;
|
|
|
|
case 3:
|
|
|
|
m23 = value;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
case 3:
|
|
|
|
switch (j) {
|
|
|
|
case 0:
|
|
|
|
m30 = value;
|
|
|
|
return;
|
|
|
|
case 1:
|
|
|
|
m31 = value;
|
|
|
|
return;
|
|
|
|
case 2:
|
|
|
|
m32 = value;
|
|
|
|
return;
|
|
|
|
case 3:
|
|
|
|
m33 = value;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
throw new Exception("Invalid indices into matrix.");
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>set</code> sets the values of this matrix from an array of values.
|
|
|
|
*
|
|
|
|
* @param matrix the matrix to set the value to.
|
|
|
|
* @throws Exception if the array is not of size 16.
|
|
|
|
*/
|
|
|
|
public void set(float[][] matrix) throws Exception {
|
|
|
|
if (matrix.length != 4 || matrix[0].length != 4) {
|
|
|
|
throw new Exception("Array must be of size 16.");
|
|
|
|
}
|
|
|
|
|
|
|
|
m00 = matrix[0][0];
|
|
|
|
m01 = matrix[0][1];
|
|
|
|
m02 = matrix[0][2];
|
|
|
|
m03 = matrix[0][3];
|
|
|
|
m10 = matrix[1][0];
|
|
|
|
m11 = matrix[1][1];
|
|
|
|
m12 = matrix[1][2];
|
|
|
|
m13 = matrix[1][3];
|
|
|
|
m20 = matrix[2][0];
|
|
|
|
m21 = matrix[2][1];
|
|
|
|
m22 = matrix[2][2];
|
|
|
|
m23 = matrix[2][3];
|
|
|
|
m30 = matrix[3][0];
|
|
|
|
m31 = matrix[3][1];
|
|
|
|
m32 = matrix[3][2];
|
|
|
|
m33 = matrix[3][3];
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>set</code> sets the values of this matrix from another matrix.
|
|
|
|
*
|
|
|
|
* @param matrix the matrix to read the value from.
|
|
|
|
*/
|
|
|
|
public Matrix4f set(Matrix4f matrix) {
|
|
|
|
m00 = matrix.m00;
|
|
|
|
m01 = matrix.m01;
|
|
|
|
m02 = matrix.m02;
|
|
|
|
m03 = matrix.m03;
|
|
|
|
m10 = matrix.m10;
|
|
|
|
m11 = matrix.m11;
|
|
|
|
m12 = matrix.m12;
|
|
|
|
m13 = matrix.m13;
|
|
|
|
m20 = matrix.m20;
|
|
|
|
m21 = matrix.m21;
|
|
|
|
m22 = matrix.m22;
|
|
|
|
m23 = matrix.m23;
|
|
|
|
m30 = matrix.m30;
|
|
|
|
m31 = matrix.m31;
|
|
|
|
m32 = matrix.m32;
|
|
|
|
m33 = matrix.m33;
|
|
|
|
return this;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>set</code> sets the values of this matrix from an array of values
|
|
|
|
* assuming that the data is rowMajor order;
|
|
|
|
*
|
|
|
|
* @param matrix the matrix to set the value to.
|
|
|
|
* @throws Exception
|
|
|
|
*/
|
|
|
|
public void set(float[] matrix) throws Exception {
|
|
|
|
set(matrix, true);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>set</code> sets the values of this matrix from an array of values;
|
|
|
|
*
|
|
|
|
* @param matrix the matrix to set the value to.
|
|
|
|
* @param rowMajor whether the incoming data is in row or column major order.
|
|
|
|
* @throws Exception
|
|
|
|
*/
|
|
|
|
public void set(float[] matrix, boolean rowMajor) throws Exception {
|
|
|
|
if (matrix.length != 16)
|
|
|
|
throw new Exception("Array must be of size 16.");
|
|
|
|
|
|
|
|
if (rowMajor) {
|
|
|
|
m00 = matrix[0];
|
|
|
|
m01 = matrix[1];
|
|
|
|
m02 = matrix[2];
|
|
|
|
m03 = matrix[3];
|
|
|
|
m10 = matrix[4];
|
|
|
|
m11 = matrix[5];
|
|
|
|
m12 = matrix[6];
|
|
|
|
m13 = matrix[7];
|
|
|
|
m20 = matrix[8];
|
|
|
|
m21 = matrix[9];
|
|
|
|
m22 = matrix[10];
|
|
|
|
m23 = matrix[11];
|
|
|
|
m30 = matrix[12];
|
|
|
|
m31 = matrix[13];
|
|
|
|
m32 = matrix[14];
|
|
|
|
m33 = matrix[15];
|
|
|
|
} else {
|
|
|
|
m00 = matrix[0];
|
|
|
|
m01 = matrix[4];
|
|
|
|
m02 = matrix[8];
|
|
|
|
m03 = matrix[12];
|
|
|
|
m10 = matrix[1];
|
|
|
|
m11 = matrix[5];
|
|
|
|
m12 = matrix[9];
|
|
|
|
m13 = matrix[13];
|
|
|
|
m20 = matrix[2];
|
|
|
|
m21 = matrix[6];
|
|
|
|
m22 = matrix[10];
|
|
|
|
m23 = matrix[14];
|
|
|
|
m30 = matrix[3];
|
|
|
|
m31 = matrix[7];
|
|
|
|
m32 = matrix[11];
|
|
|
|
m33 = matrix[15];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
public Matrix4f transpose() throws Exception {
|
|
|
|
float[] tmp = new float[16];
|
|
|
|
get(tmp, true);
|
|
|
|
return new Matrix4f(tmp);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>transpose</code> locally transposes this Matrix.
|
|
|
|
*
|
|
|
|
* @return this object for chaining.
|
|
|
|
*/
|
|
|
|
public Matrix4f transposeLocal() {
|
|
|
|
float tmp = m01;
|
|
|
|
m01 = m10;
|
|
|
|
m10 = tmp;
|
|
|
|
|
|
|
|
tmp = m02;
|
|
|
|
m02 = m20;
|
|
|
|
m20 = tmp;
|
|
|
|
|
|
|
|
tmp = m03;
|
|
|
|
m03 = m30;
|
|
|
|
m30 = tmp;
|
|
|
|
|
|
|
|
tmp = m12;
|
|
|
|
m12 = m21;
|
|
|
|
m21 = tmp;
|
|
|
|
|
|
|
|
tmp = m13;
|
|
|
|
m13 = m31;
|
|
|
|
m31 = tmp;
|
|
|
|
|
|
|
|
tmp = m23;
|
|
|
|
m23 = m32;
|
|
|
|
m32 = tmp;
|
|
|
|
|
|
|
|
return this;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>fillFloatBuffer</code> fills a FloatBuffer object with the matrix
|
|
|
|
* data.
|
|
|
|
*
|
|
|
|
* @param fb the buffer to fill, must be correct size
|
|
|
|
* @return matrix data as a FloatBuffer.
|
|
|
|
*/
|
|
|
|
public FloatBuffer fillFloatBuffer(FloatBuffer fb) {
|
|
|
|
return fillFloatBuffer(fb, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>fillFloatBuffer</code> fills a FloatBuffer object with the matrix
|
|
|
|
* data.
|
|
|
|
*
|
|
|
|
* @param fb the buffer to fill, starting at current position. Must have
|
|
|
|
* room for 16 more floats.
|
|
|
|
* @param columnMajor if true, this buffer should be filled with column major data,
|
|
|
|
* otherwise it will be filled row major.
|
|
|
|
* @return matrix data as a FloatBuffer. (position is advanced by 16 and any
|
|
|
|
* limit set is not changed).
|
|
|
|
*/
|
|
|
|
public FloatBuffer fillFloatBuffer(FloatBuffer fb, boolean columnMajor) {
|
|
|
|
if (columnMajor) {
|
|
|
|
fb.put(m00).put(m10).put(m20).put(m30);
|
|
|
|
fb.put(m01).put(m11).put(m21).put(m31);
|
|
|
|
fb.put(m02).put(m12).put(m22).put(m32);
|
|
|
|
fb.put(m03).put(m13).put(m23).put(m33);
|
|
|
|
} else {
|
|
|
|
fb.put(m00).put(m01).put(m02).put(m03);
|
|
|
|
fb.put(m10).put(m11).put(m12).put(m13);
|
|
|
|
fb.put(m20).put(m21).put(m22).put(m23);
|
|
|
|
fb.put(m30).put(m31).put(m32).put(m33);
|
|
|
|
}
|
|
|
|
return fb;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>readFloatBuffer</code> reads value for this matrix from a
|
|
|
|
* FloatBuffer.
|
|
|
|
*
|
|
|
|
* @param fb the buffer to read from, must be correct size
|
|
|
|
* @return this data as a FloatBuffer.
|
|
|
|
*/
|
|
|
|
public Matrix4f readFloatBuffer(FloatBuffer fb) {
|
|
|
|
return readFloatBuffer(fb, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>readFloatBuffer</code> reads value for this matrix from a
|
|
|
|
* FloatBuffer.
|
|
|
|
*
|
|
|
|
* @param fb the buffer to read from, must be correct size
|
|
|
|
* @param columnMajor if true, this buffer should be filled with column major data,
|
|
|
|
* otherwise it will be filled row major.
|
|
|
|
* @return this data as a FloatBuffer.
|
|
|
|
*/
|
|
|
|
public Matrix4f readFloatBuffer(FloatBuffer fb, boolean columnMajor) {
|
|
|
|
|
|
|
|
if (columnMajor) {
|
|
|
|
m00 = fb.get();
|
|
|
|
m10 = fb.get();
|
|
|
|
m20 = fb.get();
|
|
|
|
m30 = fb.get();
|
|
|
|
m01 = fb.get();
|
|
|
|
m11 = fb.get();
|
|
|
|
m21 = fb.get();
|
|
|
|
m31 = fb.get();
|
|
|
|
m02 = fb.get();
|
|
|
|
m12 = fb.get();
|
|
|
|
m22 = fb.get();
|
|
|
|
m32 = fb.get();
|
|
|
|
m03 = fb.get();
|
|
|
|
m13 = fb.get();
|
|
|
|
m23 = fb.get();
|
|
|
|
m33 = fb.get();
|
|
|
|
} else {
|
|
|
|
m00 = fb.get();
|
|
|
|
m01 = fb.get();
|
|
|
|
m02 = fb.get();
|
|
|
|
m03 = fb.get();
|
|
|
|
m10 = fb.get();
|
|
|
|
m11 = fb.get();
|
|
|
|
m12 = fb.get();
|
|
|
|
m13 = fb.get();
|
|
|
|
m20 = fb.get();
|
|
|
|
m21 = fb.get();
|
|
|
|
m22 = fb.get();
|
|
|
|
m23 = fb.get();
|
|
|
|
m30 = fb.get();
|
|
|
|
m31 = fb.get();
|
|
|
|
m32 = fb.get();
|
|
|
|
m33 = fb.get();
|
|
|
|
}
|
|
|
|
return this;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Legacy wrapper. This name implies that an identity matrix is "loaded",
|
|
|
|
* but one is not. Instead, the elements of 'this' identity are set.
|
|
|
|
*/
|
|
|
|
public void loadIdentity() {
|
|
|
|
setIdentity();
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Sets this matrix to the identity matrix, namely all zeros with ones along
|
|
|
|
* the diagonal.
|
|
|
|
*/
|
|
|
|
public void setIdentity() {
|
|
|
|
m01 = m02 = m03 = m10 = m12 = m13 = m20 = m21 = m23 = m30 = m31 = m32 = 0.0f;
|
|
|
|
m00 = m11 = m22 = m33 = 1.0f;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>fromAngleAxis</code> sets this matrix4f to the values specified by
|
|
|
|
* an angle and an axis of rotation. This method creates an object, so use
|
|
|
|
* fromAngleNormalAxis if your axis is already normalized.
|
|
|
|
*
|
|
|
|
* @param angle the angle to rotate (in radians).
|
|
|
|
* @param axis the axis of rotation.
|
|
|
|
*/
|
|
|
|
public void fromAngleAxis(float angle, Vector3f axis) {
|
|
|
|
Vector3f normAxis = axis.normalize();
|
|
|
|
fromAngleNormalAxis(angle, normAxis);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>fromAngleNormalAxis</code> sets this matrix4f to the values
|
|
|
|
* specified by an angle and a normalized axis of rotation.
|
|
|
|
*
|
|
|
|
* @param angle the angle to rotate (in radians).
|
|
|
|
* @param axis the axis of rotation (already normalized).
|
|
|
|
*/
|
|
|
|
public void fromAngleNormalAxis(float angle, Vector3f axis) {
|
|
|
|
zero();
|
|
|
|
m33 = 1;
|
|
|
|
|
|
|
|
float fCos = FastMath.cos(angle);
|
|
|
|
float fSin = FastMath.sin(angle);
|
|
|
|
float fOneMinusCos = ((float) 1.0) - fCos;
|
|
|
|
float fX2 = axis.x * axis.x;
|
|
|
|
float fY2 = axis.y * axis.y;
|
|
|
|
float fZ2 = axis.z * axis.z;
|
|
|
|
float fXYM = axis.x * axis.y * fOneMinusCos;
|
|
|
|
float fXZM = axis.x * axis.z * fOneMinusCos;
|
|
|
|
float fYZM = axis.y * axis.z * fOneMinusCos;
|
|
|
|
float fXSin = axis.x * fSin;
|
|
|
|
float fYSin = axis.y * fSin;
|
|
|
|
float fZSin = axis.z * fSin;
|
|
|
|
|
|
|
|
m00 = fX2 * fOneMinusCos + fCos;
|
|
|
|
m01 = fXYM - fZSin;
|
|
|
|
m02 = fXZM + fYSin;
|
|
|
|
m10 = fXYM + fZSin;
|
|
|
|
m11 = fY2 * fOneMinusCos + fCos;
|
|
|
|
m12 = fYZM - fXSin;
|
|
|
|
m20 = fXZM - fYSin;
|
|
|
|
m21 = fYZM + fXSin;
|
|
|
|
m22 = fZ2 * fOneMinusCos + fCos;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>mult</code> multiplies this matrix by a scalar.
|
|
|
|
*
|
|
|
|
* @param scalar the scalar to multiply this matrix by.
|
|
|
|
*/
|
|
|
|
public void multLocal(float scalar) {
|
|
|
|
m00 *= scalar;
|
|
|
|
m01 *= scalar;
|
|
|
|
m02 *= scalar;
|
|
|
|
m03 *= scalar;
|
|
|
|
m10 *= scalar;
|
|
|
|
m11 *= scalar;
|
|
|
|
m12 *= scalar;
|
|
|
|
m13 *= scalar;
|
|
|
|
m20 *= scalar;
|
|
|
|
m21 *= scalar;
|
|
|
|
m22 *= scalar;
|
|
|
|
m23 *= scalar;
|
|
|
|
m30 *= scalar;
|
|
|
|
m31 *= scalar;
|
|
|
|
m32 *= scalar;
|
|
|
|
m33 *= scalar;
|
|
|
|
}
|
|
|
|
|
|
|
|
public Matrix4f mult(float scalar) {
|
|
|
|
Matrix4f out = new Matrix4f();
|
|
|
|
out.set(this);
|
|
|
|
out.multLocal(scalar);
|
|
|
|
return out;
|
|
|
|
}
|
|
|
|
|
|
|
|
public Matrix4f mult(float scalar, Matrix4f store) {
|
|
|
|
store.set(this);
|
|
|
|
store.multLocal(scalar);
|
|
|
|
return store;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>mult</code> multiplies this matrix with another matrix. The result
|
|
|
|
* matrix will then be returned. This matrix will be on the left hand side,
|
|
|
|
* while the parameter matrix will be on the right.
|
|
|
|
*
|
|
|
|
* @param in2 the matrix to multiply this matrix by.
|
|
|
|
* @return the resultant matrix
|
|
|
|
*/
|
|
|
|
public Matrix4f mult(Matrix4f in2) {
|
|
|
|
return mult(in2, null);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>mult</code> multiplies this matrix with another matrix. The result
|
|
|
|
* matrix will then be returned. This matrix will be on the left hand side,
|
|
|
|
* while the parameter matrix will be on the right.
|
|
|
|
*
|
|
|
|
* @param in2 the matrix to multiply this matrix by.
|
|
|
|
* @param store where to store the result. It is safe for in2 and store to be
|
|
|
|
* the same object.
|
|
|
|
* @return the resultant matrix
|
|
|
|
*/
|
|
|
|
public Matrix4f mult(Matrix4f in2, Matrix4f store) {
|
|
|
|
if (store == null)
|
|
|
|
store = new Matrix4f();
|
|
|
|
|
|
|
|
float temp00, temp01, temp02, temp03;
|
|
|
|
float temp10, temp11, temp12, temp13;
|
|
|
|
float temp20, temp21, temp22, temp23;
|
|
|
|
float temp30, temp31, temp32, temp33;
|
|
|
|
|
|
|
|
temp00 = m00 * in2.m00 + m01 * in2.m10 + m02 * in2.m20 + m03 * in2.m30;
|
|
|
|
temp01 = m00 * in2.m01 + m01 * in2.m11 + m02 * in2.m21 + m03 * in2.m31;
|
|
|
|
temp02 = m00 * in2.m02 + m01 * in2.m12 + m02 * in2.m22 + m03 * in2.m32;
|
|
|
|
temp03 = m00 * in2.m03 + m01 * in2.m13 + m02 * in2.m23 + m03 * in2.m33;
|
|
|
|
|
|
|
|
temp10 = m10 * in2.m00 + m11 * in2.m10 + m12 * in2.m20 + m13 * in2.m30;
|
|
|
|
temp11 = m10 * in2.m01 + m11 * in2.m11 + m12 * in2.m21 + m13 * in2.m31;
|
|
|
|
temp12 = m10 * in2.m02 + m11 * in2.m12 + m12 * in2.m22 + m13 * in2.m32;
|
|
|
|
temp13 = m10 * in2.m03 + m11 * in2.m13 + m12 * in2.m23 + m13 * in2.m33;
|
|
|
|
|
|
|
|
temp20 = m20 * in2.m00 + m21 * in2.m10 + m22 * in2.m20 + m23 * in2.m30;
|
|
|
|
temp21 = m20 * in2.m01 + m21 * in2.m11 + m22 * in2.m21 + m23 * in2.m31;
|
|
|
|
temp22 = m20 * in2.m02 + m21 * in2.m12 + m22 * in2.m22 + m23 * in2.m32;
|
|
|
|
temp23 = m20 * in2.m03 + m21 * in2.m13 + m22 * in2.m23 + m23 * in2.m33;
|
|
|
|
|
|
|
|
temp30 = m30 * in2.m00 + m31 * in2.m10 + m32 * in2.m20 + m33 * in2.m30;
|
|
|
|
temp31 = m30 * in2.m01 + m31 * in2.m11 + m32 * in2.m21 + m33 * in2.m31;
|
|
|
|
temp32 = m30 * in2.m02 + m31 * in2.m12 + m32 * in2.m22 + m33 * in2.m32;
|
|
|
|
temp33 = m30 * in2.m03 + m31 * in2.m13 + m32 * in2.m23 + m33 * in2.m33;
|
|
|
|
|
|
|
|
store.m00 = temp00;
|
|
|
|
store.m01 = temp01;
|
|
|
|
store.m02 = temp02;
|
|
|
|
store.m03 = temp03;
|
|
|
|
store.m10 = temp10;
|
|
|
|
store.m11 = temp11;
|
|
|
|
store.m12 = temp12;
|
|
|
|
store.m13 = temp13;
|
|
|
|
store.m20 = temp20;
|
|
|
|
store.m21 = temp21;
|
|
|
|
store.m22 = temp22;
|
|
|
|
store.m23 = temp23;
|
|
|
|
store.m30 = temp30;
|
|
|
|
store.m31 = temp31;
|
|
|
|
store.m32 = temp32;
|
|
|
|
store.m33 = temp33;
|
|
|
|
|
|
|
|
return store;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>mult</code> multiplies this matrix with another matrix. The results
|
|
|
|
* are stored internally and a handle to this matrix will then be returned.
|
|
|
|
* This matrix will be on the left hand side, while the parameter matrix
|
|
|
|
* will be on the right.
|
|
|
|
*
|
|
|
|
* @param in2 the matrix to multiply this matrix by.
|
|
|
|
* @return the resultant matrix
|
|
|
|
*/
|
|
|
|
public Matrix4f multLocal(Matrix4f in2) {
|
|
|
|
|
|
|
|
return mult(in2, this);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>mult</code> multiplies a vector about a rotation matrix. The
|
|
|
|
* resulting vector is returned as a new Vector3f.
|
|
|
|
*
|
|
|
|
* @param vec vec to multiply against.
|
|
|
|
* @return the rotated vector.
|
|
|
|
*/
|
|
|
|
public Vector3f mult(Vector3f vec) {
|
|
|
|
return mult(vec, null);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>mult</code> multiplies a vector about a rotation matrix and adds
|
|
|
|
* translation. The resulting vector is returned.
|
|
|
|
*
|
|
|
|
* @param vec vec to multiply against.
|
|
|
|
* @param store a vector to store the result in. Created if null is passed.
|
|
|
|
* @return the rotated vector.
|
|
|
|
*/
|
|
|
|
public Vector3f mult(Vector3f vec, Vector3f store) {
|
|
|
|
if (store == null)
|
|
|
|
store = new Vector3f();
|
|
|
|
|
|
|
|
float vx = vec.x, vy = vec.y, vz = vec.z;
|
|
|
|
store.x = m00 * vx + m01 * vy + m02 * vz + m03;
|
|
|
|
store.y = m10 * vx + m11 * vy + m12 * vz + m13;
|
|
|
|
store.z = m20 * vx + m21 * vy + m22 * vz + m23;
|
|
|
|
|
|
|
|
return store;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>mult</code> multiplies a vector about a rotation matrix. The
|
|
|
|
* resulting vector is returned.
|
|
|
|
*
|
|
|
|
* @param vec vec to multiply against.
|
|
|
|
* @param store a vector to store the result in. created if null is passed.
|
|
|
|
* @return the rotated vector.
|
|
|
|
*/
|
|
|
|
public Vector3f multAcross(Vector3f vec, Vector3f store) {
|
|
|
|
if (null == vec) {
|
|
|
|
return null;
|
|
|
|
}
|
|
|
|
if (store == null)
|
|
|
|
store = new Vector3f();
|
|
|
|
|
|
|
|
float vx = vec.x, vy = vec.y, vz = vec.z;
|
|
|
|
store.x = m00 * vx + m10 * vy + m20 * vz + m30 * 1;
|
|
|
|
store.y = m01 * vx + m11 * vy + m21 * vz + m31 * 1;
|
|
|
|
store.z = m02 * vx + m12 * vy + m22 * vz + m32 * 1;
|
|
|
|
|
|
|
|
return store;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>mult</code> multiplies a quaternion about a matrix. The resulting
|
|
|
|
* vector is returned.
|
|
|
|
*
|
|
|
|
* @param vec vec to multiply against.
|
|
|
|
* @param store a quaternion to store the result in. created if null is
|
|
|
|
* passed.
|
|
|
|
* @return store = this * vec
|
|
|
|
*/
|
|
|
|
public Quaternion mult(Quaternion vec, Quaternion store) {
|
|
|
|
|
|
|
|
if (null == vec) {
|
|
|
|
return null;
|
|
|
|
}
|
|
|
|
if (store == null)
|
|
|
|
store = new Quaternion();
|
|
|
|
|
|
|
|
float x = m00 * vec.x + m10 * vec.y + m20 * vec.z + m30 * vec.w;
|
|
|
|
float y = m01 * vec.x + m11 * vec.y + m21 * vec.z + m31 * vec.w;
|
|
|
|
float z = m02 * vec.x + m12 * vec.y + m22 * vec.z + m32 * vec.w;
|
|
|
|
float w = m03 * vec.x + m13 * vec.y + m23 * vec.z + m33 * vec.w;
|
|
|
|
store.x = x;
|
|
|
|
store.y = y;
|
|
|
|
store.z = z;
|
|
|
|
store.w = w;
|
|
|
|
|
|
|
|
return store;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>mult</code> multiplies an array of 4 floats against this rotation
|
|
|
|
* matrix. The results are stored directly in the array. (vec4f x mat4f)
|
|
|
|
*
|
|
|
|
* @param vec4f float array (size 4) to multiply against the matrix.
|
|
|
|
* @return the vec4f for chaining.
|
|
|
|
*/
|
|
|
|
public float[] mult(float[] vec4f) {
|
|
|
|
if (null == vec4f || vec4f.length != 4) {
|
|
|
|
return null;
|
|
|
|
}
|
|
|
|
|
|
|
|
float x = vec4f[0], y = vec4f[1], z = vec4f[2], w = vec4f[3];
|
|
|
|
|
|
|
|
vec4f[0] = m00 * x + m01 * y + m02 * z + m03 * w;
|
|
|
|
vec4f[1] = m10 * x + m11 * y + m12 * z + m13 * w;
|
|
|
|
vec4f[2] = m20 * x + m21 * y + m22 * z + m23 * w;
|
|
|
|
vec4f[3] = m30 * x + m31 * y + m32 * z + m33 * w;
|
|
|
|
|
|
|
|
return vec4f;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>mult</code> multiplies an array of 4 floats against this rotation
|
|
|
|
* matrix. The results are stored directly in the array. (vec4f x mat4f)
|
|
|
|
*
|
|
|
|
* @param vec4f float array (size 4) to multiply against the matrix.
|
|
|
|
* @return the vec4f for chaining.
|
|
|
|
*/
|
|
|
|
public float[] multAcross(float[] vec4f) {
|
|
|
|
if (null == vec4f || vec4f.length != 4) {
|
|
|
|
return null;
|
|
|
|
}
|
|
|
|
|
|
|
|
float x = vec4f[0], y = vec4f[1], z = vec4f[2], w = vec4f[3];
|
|
|
|
|
|
|
|
vec4f[0] = m00 * x + m10 * y + m20 * z + m30 * w;
|
|
|
|
vec4f[1] = m01 * x + m11 * y + m21 * z + m31 * w;
|
|
|
|
vec4f[2] = m02 * x + m12 * y + m22 * z + m32 * w;
|
|
|
|
vec4f[3] = m03 * x + m13 * y + m23 * z + m33 * w;
|
|
|
|
|
|
|
|
return vec4f;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Inverts this matrix as a new Matrix4f.
|
|
|
|
*
|
|
|
|
* @return The new inverse matrix
|
|
|
|
*/
|
|
|
|
public Matrix4f invert() {
|
|
|
|
return invert(null);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Inverts this matrix and stores it in the given store.
|
|
|
|
*
|
|
|
|
* @return The store
|
|
|
|
*/
|
|
|
|
public Matrix4f invert(Matrix4f store) {
|
|
|
|
if (store == null)
|
|
|
|
store = new Matrix4f();
|
|
|
|
|
|
|
|
float fA0 = m00 * m11 - m01 * m10;
|
|
|
|
float fA1 = m00 * m12 - m02 * m10;
|
|
|
|
float fA2 = m00 * m13 - m03 * m10;
|
|
|
|
float fA3 = m01 * m12 - m02 * m11;
|
|
|
|
float fA4 = m01 * m13 - m03 * m11;
|
|
|
|
float fA5 = m02 * m13 - m03 * m12;
|
|
|
|
float fB0 = m20 * m31 - m21 * m30;
|
|
|
|
float fB1 = m20 * m32 - m22 * m30;
|
|
|
|
float fB2 = m20 * m33 - m23 * m30;
|
|
|
|
float fB3 = m21 * m32 - m22 * m31;
|
|
|
|
float fB4 = m21 * m33 - m23 * m31;
|
|
|
|
float fB5 = m22 * m33 - m23 * m32;
|
|
|
|
float fDet = fA0 * fB5 - fA1 * fB4 + fA2 * fB3 + fA3 * fB2 - fA4 * fB1 + fA5 * fB0;
|
|
|
|
|
|
|
|
if (FastMath.abs(fDet) <= 0)
|
|
|
|
return store.zero();
|
|
|
|
|
|
|
|
store.m00 = +m11 * fB5 - m12 * fB4 + m13 * fB3;
|
|
|
|
store.m10 = -m10 * fB5 + m12 * fB2 - m13 * fB1;
|
|
|
|
store.m20 = +m10 * fB4 - m11 * fB2 + m13 * fB0;
|
|
|
|
store.m30 = -m10 * fB3 + m11 * fB1 - m12 * fB0;
|
|
|
|
store.m01 = -m01 * fB5 + m02 * fB4 - m03 * fB3;
|
|
|
|
store.m11 = +m00 * fB5 - m02 * fB2 + m03 * fB1;
|
|
|
|
store.m21 = -m00 * fB4 + m01 * fB2 - m03 * fB0;
|
|
|
|
store.m31 = +m00 * fB3 - m01 * fB1 + m02 * fB0;
|
|
|
|
store.m02 = +m31 * fA5 - m32 * fA4 + m33 * fA3;
|
|
|
|
store.m12 = -m30 * fA5 + m32 * fA2 - m33 * fA1;
|
|
|
|
store.m22 = +m30 * fA4 - m31 * fA2 + m33 * fA0;
|
|
|
|
store.m32 = -m30 * fA3 + m31 * fA1 - m32 * fA0;
|
|
|
|
store.m03 = -m21 * fA5 + m22 * fA4 - m23 * fA3;
|
|
|
|
store.m13 = +m20 * fA5 - m22 * fA2 + m23 * fA1;
|
|
|
|
store.m23 = -m20 * fA4 + m21 * fA2 - m23 * fA0;
|
|
|
|
store.m33 = +m20 * fA3 - m21 * fA1 + m22 * fA0;
|
|
|
|
|
|
|
|
float fInvDet = 1.0f / fDet;
|
|
|
|
store.multLocal(fInvDet);
|
|
|
|
|
|
|
|
return store;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Inverts this matrix locally.
|
|
|
|
*
|
|
|
|
* @return this
|
|
|
|
*/
|
|
|
|
public Matrix4f invertLocal() {
|
|
|
|
|
|
|
|
float fA0 = m00 * m11 - m01 * m10;
|
|
|
|
float fA1 = m00 * m12 - m02 * m10;
|
|
|
|
float fA2 = m00 * m13 - m03 * m10;
|
|
|
|
float fA3 = m01 * m12 - m02 * m11;
|
|
|
|
float fA4 = m01 * m13 - m03 * m11;
|
|
|
|
float fA5 = m02 * m13 - m03 * m12;
|
|
|
|
float fB0 = m20 * m31 - m21 * m30;
|
|
|
|
float fB1 = m20 * m32 - m22 * m30;
|
|
|
|
float fB2 = m20 * m33 - m23 * m30;
|
|
|
|
float fB3 = m21 * m32 - m22 * m31;
|
|
|
|
float fB4 = m21 * m33 - m23 * m31;
|
|
|
|
float fB5 = m22 * m33 - m23 * m32;
|
|
|
|
float fDet = fA0 * fB5 - fA1 * fB4 + fA2 * fB3 + fA3 * fB2 - fA4 * fB1 + fA5 * fB0;
|
|
|
|
|
|
|
|
if (FastMath.abs(fDet) <= FastMath.FLT_EPSILON)
|
|
|
|
return zero();
|
|
|
|
|
|
|
|
float f00 = +m11 * fB5 - m12 * fB4 + m13 * fB3;
|
|
|
|
float f10 = -m10 * fB5 + m12 * fB2 - m13 * fB1;
|
|
|
|
float f20 = +m10 * fB4 - m11 * fB2 + m13 * fB0;
|
|
|
|
float f30 = -m10 * fB3 + m11 * fB1 - m12 * fB0;
|
|
|
|
float f01 = -m01 * fB5 + m02 * fB4 - m03 * fB3;
|
|
|
|
float f11 = +m00 * fB5 - m02 * fB2 + m03 * fB1;
|
|
|
|
float f21 = -m00 * fB4 + m01 * fB2 - m03 * fB0;
|
|
|
|
float f31 = +m00 * fB3 - m01 * fB1 + m02 * fB0;
|
|
|
|
float f02 = +m31 * fA5 - m32 * fA4 + m33 * fA3;
|
|
|
|
float f12 = -m30 * fA5 + m32 * fA2 - m33 * fA1;
|
|
|
|
float f22 = +m30 * fA4 - m31 * fA2 + m33 * fA0;
|
|
|
|
float f32 = -m30 * fA3 + m31 * fA1 - m32 * fA0;
|
|
|
|
float f03 = -m21 * fA5 + m22 * fA4 - m23 * fA3;
|
|
|
|
float f13 = +m20 * fA5 - m22 * fA2 + m23 * fA1;
|
|
|
|
float f23 = -m20 * fA4 + m21 * fA2 - m23 * fA0;
|
|
|
|
float f33 = +m20 * fA3 - m21 * fA1 + m22 * fA0;
|
|
|
|
|
|
|
|
m00 = f00;
|
|
|
|
m01 = f01;
|
|
|
|
m02 = f02;
|
|
|
|
m03 = f03;
|
|
|
|
m10 = f10;
|
|
|
|
m11 = f11;
|
|
|
|
m12 = f12;
|
|
|
|
m13 = f13;
|
|
|
|
m20 = f20;
|
|
|
|
m21 = f21;
|
|
|
|
m22 = f22;
|
|
|
|
m23 = f23;
|
|
|
|
m30 = f30;
|
|
|
|
m31 = f31;
|
|
|
|
m32 = f32;
|
|
|
|
m33 = f33;
|
|
|
|
|
|
|
|
float fInvDet = 1.0f / fDet;
|
|
|
|
multLocal(fInvDet);
|
|
|
|
|
|
|
|
return this;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns a new matrix representing the adjoint of this matrix.
|
|
|
|
*
|
|
|
|
* @return The adjoint matrix
|
|
|
|
*/
|
|
|
|
public Matrix4f adjoint() {
|
|
|
|
return adjoint(null);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Places the adjoint of this matrix in store (creates store if null.)
|
|
|
|
*
|
|
|
|
* @param store The matrix to store the result in. If null, a new matrix is
|
|
|
|
* created.
|
|
|
|
* @return store
|
|
|
|
*/
|
|
|
|
public Matrix4f adjoint(Matrix4f store) {
|
|
|
|
if (store == null)
|
|
|
|
store = new Matrix4f();
|
|
|
|
|
|
|
|
float fA0 = m00 * m11 - m01 * m10;
|
|
|
|
float fA1 = m00 * m12 - m02 * m10;
|
|
|
|
float fA2 = m00 * m13 - m03 * m10;
|
|
|
|
float fA3 = m01 * m12 - m02 * m11;
|
|
|
|
float fA4 = m01 * m13 - m03 * m11;
|
|
|
|
float fA5 = m02 * m13 - m03 * m12;
|
|
|
|
float fB0 = m20 * m31 - m21 * m30;
|
|
|
|
float fB1 = m20 * m32 - m22 * m30;
|
|
|
|
float fB2 = m20 * m33 - m23 * m30;
|
|
|
|
float fB3 = m21 * m32 - m22 * m31;
|
|
|
|
float fB4 = m21 * m33 - m23 * m31;
|
|
|
|
float fB5 = m22 * m33 - m23 * m32;
|
|
|
|
|
|
|
|
store.m00 = +m11 * fB5 - m12 * fB4 + m13 * fB3;
|
|
|
|
store.m10 = -m10 * fB5 + m12 * fB2 - m13 * fB1;
|
|
|
|
store.m20 = +m10 * fB4 - m11 * fB2 + m13 * fB0;
|
|
|
|
store.m30 = -m10 * fB3 + m11 * fB1 - m12 * fB0;
|
|
|
|
store.m01 = -m01 * fB5 + m02 * fB4 - m03 * fB3;
|
|
|
|
store.m11 = +m00 * fB5 - m02 * fB2 + m03 * fB1;
|
|
|
|
store.m21 = -m00 * fB4 + m01 * fB2 - m03 * fB0;
|
|
|
|
store.m31 = +m00 * fB3 - m01 * fB1 + m02 * fB0;
|
|
|
|
store.m02 = +m31 * fA5 - m32 * fA4 + m33 * fA3;
|
|
|
|
store.m12 = -m30 * fA5 + m32 * fA2 - m33 * fA1;
|
|
|
|
store.m22 = +m30 * fA4 - m31 * fA2 + m33 * fA0;
|
|
|
|
store.m32 = -m30 * fA3 + m31 * fA1 - m32 * fA0;
|
|
|
|
store.m03 = -m21 * fA5 + m22 * fA4 - m23 * fA3;
|
|
|
|
store.m13 = +m20 * fA5 - m22 * fA2 + m23 * fA1;
|
|
|
|
store.m23 = -m20 * fA4 + m21 * fA2 - m23 * fA0;
|
|
|
|
store.m33 = +m20 * fA3 - m21 * fA1 + m22 * fA0;
|
|
|
|
|
|
|
|
return store;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>determinant</code> generates the determinate of this matrix.
|
|
|
|
*
|
|
|
|
* @return the determinate
|
|
|
|
*/
|
|
|
|
public float determinant() {
|
|
|
|
float fA0 = m00 * m11 - m01 * m10;
|
|
|
|
float fA1 = m00 * m12 - m02 * m10;
|
|
|
|
float fA2 = m00 * m13 - m03 * m10;
|
|
|
|
float fA3 = m01 * m12 - m02 * m11;
|
|
|
|
float fA4 = m01 * m13 - m03 * m11;
|
|
|
|
float fA5 = m02 * m13 - m03 * m12;
|
|
|
|
float fB0 = m20 * m31 - m21 * m30;
|
|
|
|
float fB1 = m20 * m32 - m22 * m30;
|
|
|
|
float fB2 = m20 * m33 - m23 * m30;
|
|
|
|
float fB3 = m21 * m32 - m22 * m31;
|
|
|
|
float fB4 = m21 * m33 - m23 * m31;
|
|
|
|
float fB5 = m22 * m33 - m23 * m32;
|
|
|
|
return fA0 * fB5 - fA1 * fB4 + fA2 * fB3 + fA3 * fB2 - fA4 * fB1 + fA5 * fB0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Sets all of the values in this matrix to zero.
|
|
|
|
*
|
|
|
|
* @return this matrix
|
|
|
|
*/
|
|
|
|
public Matrix4f zero() {
|
|
|
|
m00 = m01 = m02 = m03 = m10 = m11 = m12 = m13 = m20 = m21 = m22 = m23 = m30 = m31 = m32 = m33 = 0.0f;
|
|
|
|
return this;
|
|
|
|
}
|
|
|
|
|
|
|
|
public Matrix4f add(Matrix4f mat) {
|
|
|
|
Matrix4f result = new Matrix4f();
|
|
|
|
result.m00 = this.m00 + mat.m00;
|
|
|
|
result.m01 = this.m01 + mat.m01;
|
|
|
|
result.m02 = this.m02 + mat.m02;
|
|
|
|
result.m03 = this.m03 + mat.m03;
|
|
|
|
result.m10 = this.m10 + mat.m10;
|
|
|
|
result.m11 = this.m11 + mat.m11;
|
|
|
|
result.m12 = this.m12 + mat.m12;
|
|
|
|
result.m13 = this.m13 + mat.m13;
|
|
|
|
result.m20 = this.m20 + mat.m20;
|
|
|
|
result.m21 = this.m21 + mat.m21;
|
|
|
|
result.m22 = this.m22 + mat.m22;
|
|
|
|
result.m23 = this.m23 + mat.m23;
|
|
|
|
result.m30 = this.m30 + mat.m30;
|
|
|
|
result.m31 = this.m31 + mat.m31;
|
|
|
|
result.m32 = this.m32 + mat.m32;
|
|
|
|
result.m33 = this.m33 + mat.m33;
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>add</code> adds the values of a parameter matrix to this matrix.
|
|
|
|
*
|
|
|
|
* @param mat the matrix to add to this.
|
|
|
|
*/
|
|
|
|
public void addLocal(Matrix4f mat) {
|
|
|
|
m00 += mat.m00;
|
|
|
|
m01 += mat.m01;
|
|
|
|
m02 += mat.m02;
|
|
|
|
m03 += mat.m03;
|
|
|
|
m10 += mat.m10;
|
|
|
|
m11 += mat.m11;
|
|
|
|
m12 += mat.m12;
|
|
|
|
m13 += mat.m13;
|
|
|
|
m20 += mat.m20;
|
|
|
|
m21 += mat.m21;
|
|
|
|
m22 += mat.m22;
|
|
|
|
m23 += mat.m23;
|
|
|
|
m30 += mat.m30;
|
|
|
|
m31 += mat.m31;
|
|
|
|
m32 += mat.m32;
|
|
|
|
m33 += mat.m33;
|
|
|
|
}
|
|
|
|
|
|
|
|
public Vector3f toTranslationVector() {
|
|
|
|
return new Vector3f(m03, m13, m23);
|
|
|
|
}
|
|
|
|
|
|
|
|
public void toTranslationVector(Vector3f vector) {
|
|
|
|
vector.set(m03, m13, m23);
|
|
|
|
}
|
|
|
|
|
|
|
|
public Quaternion toRotationQuat() {
|
|
|
|
Quaternion quat = new Quaternion();
|
|
|
|
quat.fromRotationMatrix(toRotationMatrix());
|
|
|
|
return quat;
|
|
|
|
}
|
|
|
|
|
|
|
|
public void toRotationQuat(Quaternion q) {
|
|
|
|
q.fromRotationMatrix(toRotationMatrix());
|
|
|
|
}
|
|
|
|
|
|
|
|
public Matrix3f toRotationMatrix() {
|
|
|
|
return new Matrix3f(m00, m01, m02, m10, m11, m12, m20, m21, m22);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
public void toRotationMatrix(Matrix3f mat) {
|
|
|
|
mat.m00 = m00;
|
|
|
|
mat.m01 = m01;
|
|
|
|
mat.m02 = m02;
|
|
|
|
mat.m10 = m10;
|
|
|
|
mat.m11 = m11;
|
|
|
|
mat.m12 = m12;
|
|
|
|
mat.m20 = m20;
|
|
|
|
mat.m21 = m21;
|
|
|
|
mat.m22 = m22;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>setTranslation</code> will set the matrix's translation values.
|
|
|
|
*
|
|
|
|
* @param translation the new values for the translation.
|
|
|
|
* @throws Exception if translation is not size 3.
|
|
|
|
*/
|
|
|
|
public void setTranslation(float[] translation) throws Exception {
|
|
|
|
if (translation.length != 3) {
|
|
|
|
throw new Exception("Translation size must be 3.");
|
|
|
|
}
|
|
|
|
m03 = translation[0];
|
|
|
|
m13 = translation[1];
|
|
|
|
m23 = translation[2];
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>setTranslation</code> will set the matrix's translation values.
|
|
|
|
*
|
|
|
|
* @param x value of the translation on the x axis
|
|
|
|
* @param y value of the translation on the y axis
|
|
|
|
* @param z value of the translation on the z axis
|
|
|
|
*/
|
|
|
|
public void setTranslation(float x, float y, float z) {
|
|
|
|
m03 = x;
|
|
|
|
m13 = y;
|
|
|
|
m23 = z;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>setTranslation</code> will set the matrix's translation values.
|
|
|
|
*
|
|
|
|
* @param translation the new values for the translation.
|
|
|
|
*/
|
|
|
|
public void setTranslation(Vector3f translation) {
|
|
|
|
m03 = translation.x;
|
|
|
|
m13 = translation.y;
|
|
|
|
m23 = translation.z;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>setInverseTranslation</code> will set the matrix's inverse
|
|
|
|
* translation values.
|
|
|
|
*
|
|
|
|
* @param translation the new values for the inverse translation.
|
|
|
|
* @throws Exception if translation is not size 3.
|
|
|
|
*/
|
|
|
|
public void setInverseTranslation(float[] translation) throws Exception {
|
|
|
|
if (translation.length != 3) {
|
|
|
|
throw new Exception("Translation size must be 3.");
|
|
|
|
}
|
|
|
|
m03 = -translation[0];
|
|
|
|
m13 = -translation[1];
|
|
|
|
m23 = -translation[2];
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>angleRotation</code> sets this matrix to that of a rotation about
|
|
|
|
* three axes (x, y, z). Where each axis has a specified rotation in
|
|
|
|
* degrees. These rotations are expressed in a single <code>Vector3f</code>
|
|
|
|
* object.
|
|
|
|
*
|
|
|
|
* @param angles the angles to rotate.
|
|
|
|
*/
|
|
|
|
public void angleRotation(Vector3f angles) {
|
|
|
|
float angle;
|
|
|
|
float sr, sp, sy, cr, cp, cy;
|
|
|
|
|
|
|
|
angle = (angles.z * FastMath.DEG_TO_RAD);
|
|
|
|
sy = FastMath.sin(angle);
|
|
|
|
cy = FastMath.cos(angle);
|
|
|
|
angle = (angles.y * FastMath.DEG_TO_RAD);
|
|
|
|
sp = FastMath.sin(angle);
|
|
|
|
cp = FastMath.cos(angle);
|
|
|
|
angle = (angles.x * FastMath.DEG_TO_RAD);
|
|
|
|
sr = FastMath.sin(angle);
|
|
|
|
cr = FastMath.cos(angle);
|
|
|
|
|
|
|
|
// matrix = (Z * Y) * X
|
|
|
|
m00 = cp * cy;
|
|
|
|
m10 = cp * sy;
|
|
|
|
m20 = -sp;
|
|
|
|
m01 = sr * sp * cy + cr * -sy;
|
|
|
|
m11 = sr * sp * sy + cr * cy;
|
|
|
|
m21 = sr * cp;
|
|
|
|
m02 = (cr * sp * cy + -sr * -sy);
|
|
|
|
m12 = (cr * sp * sy + -sr * cy);
|
|
|
|
m22 = cr * cp;
|
|
|
|
m03 = 0.0f;
|
|
|
|
m13 = 0.0f;
|
|
|
|
m23 = 0.0f;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>setRotationQuaternion</code> builds a rotation from a
|
|
|
|
* <code>Quaternion</code>.
|
|
|
|
*
|
|
|
|
* @param quat the quaternion to build the rotation from.
|
|
|
|
* @throws NullPointerException if quat is null.
|
|
|
|
*/
|
|
|
|
public void setRotationQuaternion(Quaternion quat) {
|
|
|
|
quat.toRotationMatrix(this);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>setInverseRotationRadians</code> builds an inverted rotation from
|
|
|
|
* Euler angles that are in radians.
|
|
|
|
*
|
|
|
|
* @param angles the Euler angles in radians.
|
|
|
|
* @throws Exception if angles is not size 3.
|
|
|
|
*/
|
|
|
|
public void setInverseRotationRadians(float[] angles) throws Exception {
|
|
|
|
if (angles.length != 3) {
|
|
|
|
throw new Exception("Angles must be of size 3.");
|
|
|
|
}
|
|
|
|
double cr = FastMath.cos(angles[0]);
|
|
|
|
double sr = FastMath.sin(angles[0]);
|
|
|
|
double cp = FastMath.cos(angles[1]);
|
|
|
|
double sp = FastMath.sin(angles[1]);
|
|
|
|
double cy = FastMath.cos(angles[2]);
|
|
|
|
double sy = FastMath.sin(angles[2]);
|
|
|
|
|
|
|
|
m00 = (float) (cp * cy);
|
|
|
|
m10 = (float) (cp * sy);
|
|
|
|
m20 = (float) (-sp);
|
|
|
|
|
|
|
|
double srsp = sr * sp;
|
|
|
|
double crsp = cr * sp;
|
|
|
|
|
|
|
|
m01 = (float) (srsp * cy - cr * sy);
|
|
|
|
m11 = (float) (srsp * sy + cr * cy);
|
|
|
|
m21 = (float) (sr * cp);
|
|
|
|
|
|
|
|
m02 = (float) (crsp * cy + sr * sy);
|
|
|
|
m12 = (float) (crsp * sy - sr * cy);
|
|
|
|
m22 = (float) (cr * cp);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>setInverseRotationDegrees</code> builds an inverted rotation from
|
|
|
|
* Euler angles that are in degrees.
|
|
|
|
*
|
|
|
|
* @param angles the Euler angles in degrees.
|
|
|
|
* @throws Exception if angles is not size 3.
|
|
|
|
*/
|
|
|
|
public void setInverseRotationDegrees(float[] angles) throws Exception {
|
|
|
|
if (angles.length != 3) {
|
|
|
|
throw new Exception("Angles must be of size 3.");
|
|
|
|
}
|
|
|
|
float vec[] = new float[3];
|
|
|
|
vec[0] = (angles[0] * FastMath.RAD_TO_DEG);
|
|
|
|
vec[1] = (angles[1] * FastMath.RAD_TO_DEG);
|
|
|
|
vec[2] = (angles[2] * FastMath.RAD_TO_DEG);
|
|
|
|
setInverseRotationRadians(vec);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>inverseTranslateVect</code> translates a given Vector3f by the
|
|
|
|
* translation part of this matrix.
|
|
|
|
*
|
|
|
|
* @param vec the Vector3f data to be translated.
|
|
|
|
* @throws Exception if the size of the Vector3f is not 3.
|
|
|
|
*/
|
|
|
|
public void inverseTranslateVect(float[] vec) throws Exception {
|
|
|
|
if (vec.length != 3) {
|
|
|
|
throw new Exception("vec must be of size 3.");
|
|
|
|
}
|
|
|
|
|
|
|
|
vec[0] -= m03;
|
|
|
|
vec[1] -= m13;
|
|
|
|
vec[2] -= m23;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>inverseTranslateVect</code> translates a given Vector3f by the
|
|
|
|
* translation part of this matrix.
|
|
|
|
*
|
|
|
|
* @param data the Vector3f to be translated.
|
|
|
|
* @throws Exception if the size of the Vector3f is not 3.
|
|
|
|
*/
|
|
|
|
public void inverseTranslateVect(Vector3f data) {
|
|
|
|
data.x -= m03;
|
|
|
|
data.y -= m13;
|
|
|
|
data.z -= m23;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>inverseTranslateVect</code> translates a given Vector3f by the
|
|
|
|
* translation part of this matrix.
|
|
|
|
*
|
|
|
|
* @param data the Vector3f to be translated.
|
|
|
|
* @throws Exception if the size of the Vector3f is not 3.
|
|
|
|
*/
|
|
|
|
public void translateVect(Vector3f data) {
|
|
|
|
data.x += m03;
|
|
|
|
data.y += m13;
|
|
|
|
data.z += m23;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>inverseRotateVect</code> rotates a given Vector3f by the rotation
|
|
|
|
* part of this matrix.
|
|
|
|
*
|
|
|
|
* @param vec the Vector3f to be rotated.
|
|
|
|
*/
|
|
|
|
public void inverseRotateVect(Vector3f vec) {
|
|
|
|
float vx = vec.x, vy = vec.y, vz = vec.z;
|
|
|
|
|
|
|
|
vec.x = vx * m00 + vy * m10 + vz * m20;
|
|
|
|
vec.y = vx * m01 + vy * m11 + vz * m21;
|
|
|
|
vec.z = vx * m02 + vy * m12 + vz * m22;
|
|
|
|
}
|
|
|
|
|
|
|
|
public void rotateVect(Vector3f vec) {
|
|
|
|
float vx = vec.x, vy = vec.y, vz = vec.z;
|
|
|
|
|
|
|
|
vec.x = vx * m00 + vy * m01 + vz * m02;
|
|
|
|
vec.y = vx * m10 + vy * m11 + vz * m12;
|
|
|
|
vec.z = vx * m20 + vy * m21 + vz * m22;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>toString</code> returns the string representation of this object.
|
|
|
|
* It is in a format of a 4x4 matrix. For example, an identity matrix would
|
|
|
|
* be represented by the following string. com.jme.math.Matrix3f <br>
|
|
|
|
* [<br>
|
|
|
|
* 1.0 0.0 0.0 0.0 <br>
|
|
|
|
* 0.0 1.0 0.0 0.0 <br>
|
|
|
|
* 0.0 0.0 1.0 0.0 <br>
|
|
|
|
* 0.0 0.0 0.0 1.0 <br>
|
|
|
|
* ]<br>
|
|
|
|
*
|
|
|
|
* @return the string representation of this object.
|
|
|
|
*/
|
|
|
|
@Override
|
|
|
|
public String toString() {
|
|
|
|
StringBuffer result = new StringBuffer("com.jme.math.Matrix4f\n[\n");
|
|
|
|
result.append(' ');
|
|
|
|
result.append(m00);
|
|
|
|
result.append(" ");
|
|
|
|
result.append(m01);
|
|
|
|
result.append(" ");
|
|
|
|
result.append(m02);
|
|
|
|
result.append(" ");
|
|
|
|
result.append(m03);
|
|
|
|
result.append(" \n");
|
|
|
|
result.append(' ');
|
|
|
|
result.append(m10);
|
|
|
|
result.append(" ");
|
|
|
|
result.append(m11);
|
|
|
|
result.append(" ");
|
|
|
|
result.append(m12);
|
|
|
|
result.append(" ");
|
|
|
|
result.append(m13);
|
|
|
|
result.append(" \n");
|
|
|
|
result.append(' ');
|
|
|
|
result.append(m20);
|
|
|
|
result.append(" ");
|
|
|
|
result.append(m21);
|
|
|
|
result.append(" ");
|
|
|
|
result.append(m22);
|
|
|
|
result.append(" ");
|
|
|
|
result.append(m23);
|
|
|
|
result.append(" \n");
|
|
|
|
result.append(' ');
|
|
|
|
result.append(m30);
|
|
|
|
result.append(" ");
|
|
|
|
result.append(m31);
|
|
|
|
result.append(" ");
|
|
|
|
result.append(m32);
|
|
|
|
result.append(" ");
|
|
|
|
result.append(m33);
|
|
|
|
result.append(" \n]");
|
|
|
|
return result.toString();
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* <code>hashCode</code> returns the hash code value as an integer and is
|
|
|
|
* supported for the benefit of hashing based collection classes such as
|
|
|
|
* Hashtable, HashMap, HashSet etc.
|
|
|
|
*
|
|
|
|
* @return the hashcode for this instance of Matrix4f.
|
|
|
|
* @see java.lang.Object#hashCode()
|
|
|
|
*/
|
|
|
|
@Override
|
|
|
|
public int hashCode() {
|
|
|
|
int hash = 37;
|
|
|
|
hash = 37 * hash + Float.floatToIntBits(m00);
|
|
|
|
hash = 37 * hash + Float.floatToIntBits(m01);
|
|
|
|
hash = 37 * hash + Float.floatToIntBits(m02);
|
|
|
|
hash = 37 * hash + Float.floatToIntBits(m03);
|
|
|
|
|
|
|
|
hash = 37 * hash + Float.floatToIntBits(m10);
|
|
|
|
hash = 37 * hash + Float.floatToIntBits(m11);
|
|
|
|
hash = 37 * hash + Float.floatToIntBits(m12);
|
|
|
|
hash = 37 * hash + Float.floatToIntBits(m13);
|
|
|
|
|
|
|
|
hash = 37 * hash + Float.floatToIntBits(m20);
|
|
|
|
hash = 37 * hash + Float.floatToIntBits(m21);
|
|
|
|
hash = 37 * hash + Float.floatToIntBits(m22);
|
|
|
|
hash = 37 * hash + Float.floatToIntBits(m23);
|
|
|
|
|
|
|
|
hash = 37 * hash + Float.floatToIntBits(m30);
|
|
|
|
hash = 37 * hash + Float.floatToIntBits(m31);
|
|
|
|
hash = 37 * hash + Float.floatToIntBits(m32);
|
|
|
|
hash = 37 * hash + Float.floatToIntBits(m33);
|
|
|
|
|
|
|
|
return hash;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* are these two matrices the same? they are is they both have the same mXX
|
|
|
|
* values.
|
|
|
|
*
|
|
|
|
* @param o the object to compare for equality
|
|
|
|
* @return true if they are equal
|
|
|
|
*/
|
|
|
|
@Override
|
|
|
|
public boolean equals(Object o) {
|
|
|
|
if (!(o instanceof Matrix4f) || o == null) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (this == o) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
Matrix4f comp = (Matrix4f) o;
|
|
|
|
if (Float.compare(m00, comp.m00) != 0)
|
|
|
|
return false;
|
|
|
|
if (Float.compare(m01, comp.m01) != 0)
|
|
|
|
return false;
|
|
|
|
if (Float.compare(m02, comp.m02) != 0)
|
|
|
|
return false;
|
|
|
|
if (Float.compare(m03, comp.m03) != 0)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (Float.compare(m10, comp.m10) != 0)
|
|
|
|
return false;
|
|
|
|
if (Float.compare(m11, comp.m11) != 0)
|
|
|
|
return false;
|
|
|
|
if (Float.compare(m12, comp.m12) != 0)
|
|
|
|
return false;
|
|
|
|
if (Float.compare(m13, comp.m13) != 0)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (Float.compare(m20, comp.m20) != 0)
|
|
|
|
return false;
|
|
|
|
if (Float.compare(m21, comp.m21) != 0)
|
|
|
|
return false;
|
|
|
|
if (Float.compare(m22, comp.m22) != 0)
|
|
|
|
return false;
|
|
|
|
if (Float.compare(m23, comp.m23) != 0)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (Float.compare(m30, comp.m30) != 0)
|
|
|
|
return false;
|
|
|
|
if (Float.compare(m31, comp.m31) != 0)
|
|
|
|
return false;
|
|
|
|
if (Float.compare(m32, comp.m32) != 0)
|
|
|
|
return false;
|
|
|
|
return Float.compare(m33, comp.m33) == 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @return true if this matrix is identity
|
|
|
|
*/
|
|
|
|
public boolean isIdentity() {
|
|
|
|
return (m00 == 1 && m01 == 0 && m02 == 0 && m03 == 0) && (m10 == 0 && m11 == 1 && m12 == 0 && m13 == 0)
|
|
|
|
&& (m20 == 0 && m21 == 0 && m22 == 1 && m23 == 0) && (m30 == 0 && m31 == 0 && m32 == 0 && m33 == 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Apply a scale to this matrix.
|
|
|
|
*
|
|
|
|
* @param scale the scale to apply
|
|
|
|
*/
|
|
|
|
public void scale(Vector3f scale) {
|
|
|
|
m00 *= scale.getX();
|
|
|
|
m10 *= scale.getX();
|
|
|
|
m20 *= scale.getX();
|
|
|
|
m30 *= scale.getX();
|
|
|
|
m01 *= scale.getY();
|
|
|
|
m11 *= scale.getY();
|
|
|
|
m21 *= scale.getY();
|
|
|
|
m31 *= scale.getY();
|
|
|
|
m02 *= scale.getZ();
|
|
|
|
m12 *= scale.getZ();
|
|
|
|
m22 *= scale.getZ();
|
|
|
|
m32 *= scale.getZ();
|
|
|
|
}
|
|
|
|
|
|
|
|
// XXX: This tests more solid than converting the q to a matrix and
|
|
|
|
// multiplying... why?
|
|
|
|
public void multLocal(Quaternion rotation) {
|
|
|
|
Vector3f axis = new Vector3f();
|
|
|
|
float angle = rotation.toAngleAxis(axis);
|
|
|
|
Matrix4f matrix4f = new Matrix4f();
|
|
|
|
matrix4f.fromAngleAxis(angle, axis);
|
|
|
|
multLocal(matrix4f);
|
|
|
|
}
|
|
|
|
|
|
|
|
@Override
|
|
|
|
public Matrix4f clone() {
|
|
|
|
try {
|
|
|
|
return (Matrix4f) super.clone();
|
|
|
|
} catch (CloneNotSupportedException e) {
|
|
|
|
Logger.error(e);
|
|
|
|
throw new AssertionError(); // can not happen
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|