forked from MagicBane/Server
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1710 lines
53 KiB
1710 lines
53 KiB
// • ▌ ▄ ·. ▄▄▄· ▄▄ • ▪ ▄▄· ▄▄▄▄· ▄▄▄· ▐▄▄▄ ▄▄▄ . |
|
// ·██ ▐███▪▐█ ▀█ ▐█ ▀ ▪██ ▐█ ▌▪▐█ ▀█▪▐█ ▀█ •█▌ ▐█▐▌· |
|
// ▐█ ▌▐▌▐█·▄█▀▀█ ▄█ ▀█▄▐█·██ ▄▄▐█▀▀█▄▄█▀▀█ ▐█▐ ▐▌▐▀▀▀ |
|
// ██ ██▌▐█▌▐█ ▪▐▌▐█▄▪▐█▐█▌▐███▌██▄▪▐█▐█ ▪▐▌██▐ █▌▐█▄▄▌ |
|
// ▀▀ █▪▀▀▀ ▀ ▀ ·▀▀▀▀ ▀▀▀·▀▀▀ ·▀▀▀▀ ▀ ▀ ▀▀ █▪ ▀▀▀ |
|
// Magicbane Emulator Project © 2013 - 2022 |
|
// www.magicbane.com |
|
|
|
package engine.math; |
|
|
|
import org.pmw.tinylog.Logger; |
|
|
|
import java.nio.FloatBuffer; |
|
|
|
|
|
/** |
|
* <code>Matrix4f</code> defines and maintains a 4x4 matrix in row major order. |
|
* This matrix is intended for use in a translation and rotational capacity. It |
|
* provides convenience methods for creating the matrix from a multitude of |
|
* sources. |
|
* <p> |
|
* Matrices are stored assuming column vectors on the right, with the |
|
* translation in the rightmost column. Element numbering is row,column, so m03 |
|
* is the zeroth row, third column, which is the "x" translation part. This |
|
* means that the implicit storage order is column major. However, the get() and |
|
* set() functions on float arrays default to row major order! |
|
*/ |
|
public class Matrix4f { |
|
|
|
public float m00, m01, m02, m03; |
|
|
|
public float m10, m11, m12, m13; |
|
|
|
public float m20, m21, m22, m23; |
|
|
|
public float m30, m31, m32, m33; |
|
|
|
/** |
|
* Constructor instantiates a new <code>Matrix</code> that is set to the |
|
* identity matrix. |
|
*/ |
|
public Matrix4f() { |
|
loadIdentity(); |
|
} |
|
|
|
/** |
|
* constructs a matrix with the given values. |
|
*/ |
|
public Matrix4f(float m00, float m01, float m02, float m03, float m10, float m11, float m12, float m13, float m20, float m21, |
|
float m22, float m23, float m30, float m31, float m32, float m33) { |
|
|
|
this.m00 = m00; |
|
this.m01 = m01; |
|
this.m02 = m02; |
|
this.m03 = m03; |
|
this.m10 = m10; |
|
this.m11 = m11; |
|
this.m12 = m12; |
|
this.m13 = m13; |
|
this.m20 = m20; |
|
this.m21 = m21; |
|
this.m22 = m22; |
|
this.m23 = m23; |
|
this.m30 = m30; |
|
this.m31 = m31; |
|
this.m32 = m32; |
|
this.m33 = m33; |
|
} |
|
|
|
/** |
|
* Create a new Matrix4f, given data in column-major format. |
|
* |
|
* @param array An array of 16 floats in column-major format (translation in |
|
* elements 12, 13 and 14). |
|
* @throws Exception |
|
*/ |
|
public Matrix4f(float[] array) throws Exception { |
|
set(array, false); |
|
} |
|
|
|
/** |
|
* Constructor instantiates a new <code>Matrix</code> that is set to the |
|
* provided matrix. This constructor copies a given Matrix. If the provided |
|
* matrix is null, the constructor sets the matrix to the identity. |
|
* |
|
* @param mat the matrix to copy. |
|
*/ |
|
public Matrix4f(Matrix4f mat) { |
|
copy(mat); |
|
} |
|
|
|
static boolean equalIdentity(Matrix4f mat) { |
|
if (Math.abs(mat.m00 - 1) > 1e-4) |
|
return false; |
|
if (Math.abs(mat.m11 - 1) > 1e-4) |
|
return false; |
|
if (Math.abs(mat.m22 - 1) > 1e-4) |
|
return false; |
|
if (Math.abs(mat.m33 - 1) > 1e-4) |
|
return false; |
|
|
|
if (Math.abs(mat.m01) > 1e-4) |
|
return false; |
|
if (Math.abs(mat.m02) > 1e-4) |
|
return false; |
|
if (Math.abs(mat.m03) > 1e-4) |
|
return false; |
|
|
|
if (Math.abs(mat.m10) > 1e-4) |
|
return false; |
|
if (Math.abs(mat.m12) > 1e-4) |
|
return false; |
|
if (Math.abs(mat.m13) > 1e-4) |
|
return false; |
|
|
|
if (Math.abs(mat.m20) > 1e-4) |
|
return false; |
|
if (Math.abs(mat.m21) > 1e-4) |
|
return false; |
|
if (Math.abs(mat.m23) > 1e-4) |
|
return false; |
|
|
|
if (Math.abs(mat.m30) > 1e-4) |
|
return false; |
|
if (Math.abs(mat.m31) > 1e-4) |
|
return false; |
|
return !(Math.abs(mat.m32) > 1e-4); |
|
} |
|
|
|
/** |
|
* <code>copy</code> transfers the contents of a given matrix to this |
|
* matrix. If a null matrix is supplied, this matrix is set to the identity |
|
* matrix. |
|
* |
|
* @param matrix the matrix to copy. |
|
*/ |
|
public void copy(Matrix4f matrix) { |
|
if (null == matrix) { |
|
loadIdentity(); |
|
} else { |
|
m00 = matrix.m00; |
|
m01 = matrix.m01; |
|
m02 = matrix.m02; |
|
m03 = matrix.m03; |
|
m10 = matrix.m10; |
|
m11 = matrix.m11; |
|
m12 = matrix.m12; |
|
m13 = matrix.m13; |
|
m20 = matrix.m20; |
|
m21 = matrix.m21; |
|
m22 = matrix.m22; |
|
m23 = matrix.m23; |
|
m30 = matrix.m30; |
|
m31 = matrix.m31; |
|
m32 = matrix.m32; |
|
m33 = matrix.m33; |
|
} |
|
} |
|
|
|
/** |
|
* <code>get</code> retrieves the values of this object into a float array |
|
* in row-major order. |
|
* |
|
* @param matrix the matrix to set the values into. |
|
* @throws Exception |
|
*/ |
|
public void get(float[] matrix) throws Exception { |
|
get(matrix, true); |
|
} |
|
|
|
/** |
|
* <code>set</code> retrieves the values of this object into a float array. |
|
* |
|
* @param matrix the matrix to set the values into. |
|
* @param rowMajor whether the outgoing data is in row or column major order. |
|
* @throws Exception |
|
*/ |
|
public void get(float[] matrix, boolean rowMajor) throws Exception { |
|
if (matrix.length != 16) |
|
throw new Exception("Array must be of size 16."); |
|
|
|
if (rowMajor) { |
|
matrix[0] = m00; |
|
matrix[1] = m01; |
|
matrix[2] = m02; |
|
matrix[3] = m03; |
|
matrix[4] = m10; |
|
matrix[5] = m11; |
|
matrix[6] = m12; |
|
matrix[7] = m13; |
|
matrix[8] = m20; |
|
matrix[9] = m21; |
|
matrix[10] = m22; |
|
matrix[11] = m23; |
|
matrix[12] = m30; |
|
matrix[13] = m31; |
|
matrix[14] = m32; |
|
matrix[15] = m33; |
|
} else { |
|
matrix[0] = m00; |
|
matrix[4] = m01; |
|
matrix[8] = m02; |
|
matrix[12] = m03; |
|
matrix[1] = m10; |
|
matrix[5] = m11; |
|
matrix[9] = m12; |
|
matrix[13] = m13; |
|
matrix[2] = m20; |
|
matrix[6] = m21; |
|
matrix[10] = m22; |
|
matrix[14] = m23; |
|
matrix[3] = m30; |
|
matrix[7] = m31; |
|
matrix[11] = m32; |
|
matrix[15] = m33; |
|
} |
|
} |
|
|
|
/** |
|
* <code>get</code> retrieves a value from the matrix at the given position. |
|
* If the position is invalid a <code>Exception</code> is thrown. |
|
* |
|
* @param i the row index. |
|
* @param j the column index. |
|
* @return the value at (i, j). |
|
* @throws Exception |
|
*/ |
|
public float get(int i, int j) throws Exception { |
|
switch (i) { |
|
case 0: |
|
switch (j) { |
|
case 0: |
|
return m00; |
|
case 1: |
|
return m01; |
|
case 2: |
|
return m02; |
|
case 3: |
|
return m03; |
|
} |
|
case 1: |
|
switch (j) { |
|
case 0: |
|
return m10; |
|
case 1: |
|
return m11; |
|
case 2: |
|
return m12; |
|
case 3: |
|
return m13; |
|
} |
|
case 2: |
|
switch (j) { |
|
case 0: |
|
return m20; |
|
case 1: |
|
return m21; |
|
case 2: |
|
return m22; |
|
case 3: |
|
return m23; |
|
} |
|
case 3: |
|
switch (j) { |
|
case 0: |
|
return m30; |
|
case 1: |
|
return m31; |
|
case 2: |
|
return m32; |
|
case 3: |
|
return m33; |
|
} |
|
} |
|
|
|
throw new Exception("Invalid indices into matrix."); |
|
} |
|
|
|
/** |
|
* <code>getColumn</code> returns one of three columns specified by the |
|
* parameter. This column is returned as a float array of length 4. |
|
* |
|
* @param i the column to retrieve. Must be between 0 and 3. |
|
* @return the column specified by the index. |
|
* @throws Exception |
|
*/ |
|
public float[] getColumn(int i) throws Exception { |
|
return getColumn(i, null); |
|
} |
|
|
|
/** |
|
* <code>getColumn</code> returns one of three columns specified by the |
|
* parameter. This column is returned as a float[4]. |
|
* |
|
* @param i the column to retrieve. Must be between 0 and 3. |
|
* @param store the float array to store the result in. if null, a new one is |
|
* created. |
|
* @return the column specified by the index. |
|
*/ |
|
public float[] getColumn(int i, float[] store) throws Exception { |
|
if (store == null) |
|
store = new float[4]; |
|
switch (i) { |
|
case 0: |
|
store[0] = m00; |
|
store[1] = m10; |
|
store[2] = m20; |
|
store[3] = m30; |
|
break; |
|
case 1: |
|
store[0] = m01; |
|
store[1] = m11; |
|
store[2] = m21; |
|
store[3] = m31; |
|
break; |
|
case 2: |
|
store[0] = m02; |
|
store[1] = m12; |
|
store[2] = m22; |
|
store[3] = m32; |
|
break; |
|
case 3: |
|
store[0] = m03; |
|
store[1] = m13; |
|
store[2] = m23; |
|
store[3] = m33; |
|
break; |
|
default: |
|
throw new Exception("Invalid column index. " + i); |
|
} |
|
return store; |
|
} |
|
|
|
/** |
|
* <code>setColumn</code> sets a particular column of this matrix to that |
|
* represented by the provided vector. |
|
* |
|
* @param i the column to set. |
|
* @param column the data to set. |
|
*/ |
|
public void setColumn(int i, float[] column) throws Exception { |
|
|
|
if (column == null) { |
|
return; |
|
} |
|
switch (i) { |
|
case 0: |
|
m00 = column[0]; |
|
m10 = column[1]; |
|
m20 = column[2]; |
|
m30 = column[3]; |
|
break; |
|
case 1: |
|
m01 = column[0]; |
|
m11 = column[1]; |
|
m21 = column[2]; |
|
m31 = column[3]; |
|
break; |
|
case 2: |
|
m02 = column[0]; |
|
m12 = column[1]; |
|
m22 = column[2]; |
|
m32 = column[3]; |
|
break; |
|
case 3: |
|
m03 = column[0]; |
|
m13 = column[1]; |
|
m23 = column[2]; |
|
m33 = column[3]; |
|
break; |
|
default: |
|
throw new Exception("Invalid column index. " + i); |
|
} |
|
} |
|
|
|
/** |
|
* <code>set</code> places a given value into the matrix at the given |
|
* position. If the position is invalid a <code>Exception</code> is thrown. |
|
* |
|
* @param i the row index. |
|
* @param j the column index. |
|
* @param value the value for (i, j). |
|
*/ |
|
public void set(int i, int j, float value) throws Exception { |
|
switch (i) { |
|
case 0: |
|
switch (j) { |
|
case 0: |
|
m00 = value; |
|
return; |
|
case 1: |
|
m01 = value; |
|
return; |
|
case 2: |
|
m02 = value; |
|
return; |
|
case 3: |
|
m03 = value; |
|
return; |
|
} |
|
case 1: |
|
switch (j) { |
|
case 0: |
|
m10 = value; |
|
return; |
|
case 1: |
|
m11 = value; |
|
return; |
|
case 2: |
|
m12 = value; |
|
return; |
|
case 3: |
|
m13 = value; |
|
return; |
|
} |
|
case 2: |
|
switch (j) { |
|
case 0: |
|
m20 = value; |
|
return; |
|
case 1: |
|
m21 = value; |
|
return; |
|
case 2: |
|
m22 = value; |
|
return; |
|
case 3: |
|
m23 = value; |
|
return; |
|
} |
|
case 3: |
|
switch (j) { |
|
case 0: |
|
m30 = value; |
|
return; |
|
case 1: |
|
m31 = value; |
|
return; |
|
case 2: |
|
m32 = value; |
|
return; |
|
case 3: |
|
m33 = value; |
|
return; |
|
} |
|
} |
|
throw new Exception("Invalid indices into matrix."); |
|
} |
|
|
|
/** |
|
* <code>set</code> sets the values of this matrix from an array of values. |
|
* |
|
* @param matrix the matrix to set the value to. |
|
* @throws Exception if the array is not of size 16. |
|
*/ |
|
public void set(float[][] matrix) throws Exception { |
|
if (matrix.length != 4 || matrix[0].length != 4) { |
|
throw new Exception("Array must be of size 16."); |
|
} |
|
|
|
m00 = matrix[0][0]; |
|
m01 = matrix[0][1]; |
|
m02 = matrix[0][2]; |
|
m03 = matrix[0][3]; |
|
m10 = matrix[1][0]; |
|
m11 = matrix[1][1]; |
|
m12 = matrix[1][2]; |
|
m13 = matrix[1][3]; |
|
m20 = matrix[2][0]; |
|
m21 = matrix[2][1]; |
|
m22 = matrix[2][2]; |
|
m23 = matrix[2][3]; |
|
m30 = matrix[3][0]; |
|
m31 = matrix[3][1]; |
|
m32 = matrix[3][2]; |
|
m33 = matrix[3][3]; |
|
} |
|
|
|
/** |
|
* <code>set</code> sets the values of this matrix from another matrix. |
|
* |
|
* @param matrix the matrix to read the value from. |
|
*/ |
|
public Matrix4f set(Matrix4f matrix) { |
|
m00 = matrix.m00; |
|
m01 = matrix.m01; |
|
m02 = matrix.m02; |
|
m03 = matrix.m03; |
|
m10 = matrix.m10; |
|
m11 = matrix.m11; |
|
m12 = matrix.m12; |
|
m13 = matrix.m13; |
|
m20 = matrix.m20; |
|
m21 = matrix.m21; |
|
m22 = matrix.m22; |
|
m23 = matrix.m23; |
|
m30 = matrix.m30; |
|
m31 = matrix.m31; |
|
m32 = matrix.m32; |
|
m33 = matrix.m33; |
|
return this; |
|
} |
|
|
|
/** |
|
* <code>set</code> sets the values of this matrix from an array of values |
|
* assuming that the data is rowMajor order; |
|
* |
|
* @param matrix the matrix to set the value to. |
|
* @throws Exception |
|
*/ |
|
public void set(float[] matrix) throws Exception { |
|
set(matrix, true); |
|
} |
|
|
|
/** |
|
* <code>set</code> sets the values of this matrix from an array of values; |
|
* |
|
* @param matrix the matrix to set the value to. |
|
* @param rowMajor whether the incoming data is in row or column major order. |
|
* @throws Exception |
|
*/ |
|
public void set(float[] matrix, boolean rowMajor) throws Exception { |
|
if (matrix.length != 16) |
|
throw new Exception("Array must be of size 16."); |
|
|
|
if (rowMajor) { |
|
m00 = matrix[0]; |
|
m01 = matrix[1]; |
|
m02 = matrix[2]; |
|
m03 = matrix[3]; |
|
m10 = matrix[4]; |
|
m11 = matrix[5]; |
|
m12 = matrix[6]; |
|
m13 = matrix[7]; |
|
m20 = matrix[8]; |
|
m21 = matrix[9]; |
|
m22 = matrix[10]; |
|
m23 = matrix[11]; |
|
m30 = matrix[12]; |
|
m31 = matrix[13]; |
|
m32 = matrix[14]; |
|
m33 = matrix[15]; |
|
} else { |
|
m00 = matrix[0]; |
|
m01 = matrix[4]; |
|
m02 = matrix[8]; |
|
m03 = matrix[12]; |
|
m10 = matrix[1]; |
|
m11 = matrix[5]; |
|
m12 = matrix[9]; |
|
m13 = matrix[13]; |
|
m20 = matrix[2]; |
|
m21 = matrix[6]; |
|
m22 = matrix[10]; |
|
m23 = matrix[14]; |
|
m30 = matrix[3]; |
|
m31 = matrix[7]; |
|
m32 = matrix[11]; |
|
m33 = matrix[15]; |
|
} |
|
} |
|
|
|
public Matrix4f transpose() throws Exception { |
|
float[] tmp = new float[16]; |
|
get(tmp, true); |
|
return new Matrix4f(tmp); |
|
} |
|
|
|
/** |
|
* <code>transpose</code> locally transposes this Matrix. |
|
* |
|
* @return this object for chaining. |
|
*/ |
|
public Matrix4f transposeLocal() { |
|
float tmp = m01; |
|
m01 = m10; |
|
m10 = tmp; |
|
|
|
tmp = m02; |
|
m02 = m20; |
|
m20 = tmp; |
|
|
|
tmp = m03; |
|
m03 = m30; |
|
m30 = tmp; |
|
|
|
tmp = m12; |
|
m12 = m21; |
|
m21 = tmp; |
|
|
|
tmp = m13; |
|
m13 = m31; |
|
m31 = tmp; |
|
|
|
tmp = m23; |
|
m23 = m32; |
|
m32 = tmp; |
|
|
|
return this; |
|
} |
|
|
|
/** |
|
* <code>fillFloatBuffer</code> fills a FloatBuffer object with the matrix |
|
* data. |
|
* |
|
* @param fb the buffer to fill, must be correct size |
|
* @return matrix data as a FloatBuffer. |
|
*/ |
|
public FloatBuffer fillFloatBuffer(FloatBuffer fb) { |
|
return fillFloatBuffer(fb, false); |
|
} |
|
|
|
/** |
|
* <code>fillFloatBuffer</code> fills a FloatBuffer object with the matrix |
|
* data. |
|
* |
|
* @param fb the buffer to fill, starting at current position. Must have |
|
* room for 16 more floats. |
|
* @param columnMajor if true, this buffer should be filled with column major data, |
|
* otherwise it will be filled row major. |
|
* @return matrix data as a FloatBuffer. (position is advanced by 16 and any |
|
* limit set is not changed). |
|
*/ |
|
public FloatBuffer fillFloatBuffer(FloatBuffer fb, boolean columnMajor) { |
|
if (columnMajor) { |
|
fb.put(m00).put(m10).put(m20).put(m30); |
|
fb.put(m01).put(m11).put(m21).put(m31); |
|
fb.put(m02).put(m12).put(m22).put(m32); |
|
fb.put(m03).put(m13).put(m23).put(m33); |
|
} else { |
|
fb.put(m00).put(m01).put(m02).put(m03); |
|
fb.put(m10).put(m11).put(m12).put(m13); |
|
fb.put(m20).put(m21).put(m22).put(m23); |
|
fb.put(m30).put(m31).put(m32).put(m33); |
|
} |
|
return fb; |
|
} |
|
|
|
/** |
|
* <code>readFloatBuffer</code> reads value for this matrix from a |
|
* FloatBuffer. |
|
* |
|
* @param fb the buffer to read from, must be correct size |
|
* @return this data as a FloatBuffer. |
|
*/ |
|
public Matrix4f readFloatBuffer(FloatBuffer fb) { |
|
return readFloatBuffer(fb, false); |
|
} |
|
|
|
/** |
|
* <code>readFloatBuffer</code> reads value for this matrix from a |
|
* FloatBuffer. |
|
* |
|
* @param fb the buffer to read from, must be correct size |
|
* @param columnMajor if true, this buffer should be filled with column major data, |
|
* otherwise it will be filled row major. |
|
* @return this data as a FloatBuffer. |
|
*/ |
|
public Matrix4f readFloatBuffer(FloatBuffer fb, boolean columnMajor) { |
|
|
|
if (columnMajor) { |
|
m00 = fb.get(); |
|
m10 = fb.get(); |
|
m20 = fb.get(); |
|
m30 = fb.get(); |
|
m01 = fb.get(); |
|
m11 = fb.get(); |
|
m21 = fb.get(); |
|
m31 = fb.get(); |
|
m02 = fb.get(); |
|
m12 = fb.get(); |
|
m22 = fb.get(); |
|
m32 = fb.get(); |
|
m03 = fb.get(); |
|
m13 = fb.get(); |
|
m23 = fb.get(); |
|
m33 = fb.get(); |
|
} else { |
|
m00 = fb.get(); |
|
m01 = fb.get(); |
|
m02 = fb.get(); |
|
m03 = fb.get(); |
|
m10 = fb.get(); |
|
m11 = fb.get(); |
|
m12 = fb.get(); |
|
m13 = fb.get(); |
|
m20 = fb.get(); |
|
m21 = fb.get(); |
|
m22 = fb.get(); |
|
m23 = fb.get(); |
|
m30 = fb.get(); |
|
m31 = fb.get(); |
|
m32 = fb.get(); |
|
m33 = fb.get(); |
|
} |
|
return this; |
|
} |
|
|
|
/** |
|
* Legacy wrapper. This name implies that an identity matrix is "loaded", |
|
* but one is not. Instead, the elements of 'this' identity are set. |
|
*/ |
|
public void loadIdentity() { |
|
setIdentity(); |
|
} |
|
|
|
/** |
|
* Sets this matrix to the identity matrix, namely all zeros with ones along |
|
* the diagonal. |
|
*/ |
|
public void setIdentity() { |
|
m01 = m02 = m03 = m10 = m12 = m13 = m20 = m21 = m23 = m30 = m31 = m32 = 0.0f; |
|
m00 = m11 = m22 = m33 = 1.0f; |
|
} |
|
|
|
/** |
|
* <code>fromAngleAxis</code> sets this matrix4f to the values specified by |
|
* an angle and an axis of rotation. This method creates an object, so use |
|
* fromAngleNormalAxis if your axis is already normalized. |
|
* |
|
* @param angle the angle to rotate (in radians). |
|
* @param axis the axis of rotation. |
|
*/ |
|
public void fromAngleAxis(float angle, Vector3f axis) { |
|
Vector3f normAxis = axis.normalize(); |
|
fromAngleNormalAxis(angle, normAxis); |
|
} |
|
|
|
/** |
|
* <code>fromAngleNormalAxis</code> sets this matrix4f to the values |
|
* specified by an angle and a normalized axis of rotation. |
|
* |
|
* @param angle the angle to rotate (in radians). |
|
* @param axis the axis of rotation (already normalized). |
|
*/ |
|
public void fromAngleNormalAxis(float angle, Vector3f axis) { |
|
zero(); |
|
m33 = 1; |
|
|
|
float fCos = FastMath.cos(angle); |
|
float fSin = FastMath.sin(angle); |
|
float fOneMinusCos = ((float) 1.0) - fCos; |
|
float fX2 = axis.x * axis.x; |
|
float fY2 = axis.y * axis.y; |
|
float fZ2 = axis.z * axis.z; |
|
float fXYM = axis.x * axis.y * fOneMinusCos; |
|
float fXZM = axis.x * axis.z * fOneMinusCos; |
|
float fYZM = axis.y * axis.z * fOneMinusCos; |
|
float fXSin = axis.x * fSin; |
|
float fYSin = axis.y * fSin; |
|
float fZSin = axis.z * fSin; |
|
|
|
m00 = fX2 * fOneMinusCos + fCos; |
|
m01 = fXYM - fZSin; |
|
m02 = fXZM + fYSin; |
|
m10 = fXYM + fZSin; |
|
m11 = fY2 * fOneMinusCos + fCos; |
|
m12 = fYZM - fXSin; |
|
m20 = fXZM - fYSin; |
|
m21 = fYZM + fXSin; |
|
m22 = fZ2 * fOneMinusCos + fCos; |
|
} |
|
|
|
/** |
|
* <code>mult</code> multiplies this matrix by a scalar. |
|
* |
|
* @param scalar the scalar to multiply this matrix by. |
|
*/ |
|
public void multLocal(float scalar) { |
|
m00 *= scalar; |
|
m01 *= scalar; |
|
m02 *= scalar; |
|
m03 *= scalar; |
|
m10 *= scalar; |
|
m11 *= scalar; |
|
m12 *= scalar; |
|
m13 *= scalar; |
|
m20 *= scalar; |
|
m21 *= scalar; |
|
m22 *= scalar; |
|
m23 *= scalar; |
|
m30 *= scalar; |
|
m31 *= scalar; |
|
m32 *= scalar; |
|
m33 *= scalar; |
|
} |
|
|
|
public Matrix4f mult(float scalar) { |
|
Matrix4f out = new Matrix4f(); |
|
out.set(this); |
|
out.multLocal(scalar); |
|
return out; |
|
} |
|
|
|
public Matrix4f mult(float scalar, Matrix4f store) { |
|
store.set(this); |
|
store.multLocal(scalar); |
|
return store; |
|
} |
|
|
|
/** |
|
* <code>mult</code> multiplies this matrix with another matrix. The result |
|
* matrix will then be returned. This matrix will be on the left hand side, |
|
* while the parameter matrix will be on the right. |
|
* |
|
* @param in2 the matrix to multiply this matrix by. |
|
* @return the resultant matrix |
|
*/ |
|
public Matrix4f mult(Matrix4f in2) { |
|
return mult(in2, null); |
|
} |
|
|
|
/** |
|
* <code>mult</code> multiplies this matrix with another matrix. The result |
|
* matrix will then be returned. This matrix will be on the left hand side, |
|
* while the parameter matrix will be on the right. |
|
* |
|
* @param in2 the matrix to multiply this matrix by. |
|
* @param store where to store the result. It is safe for in2 and store to be |
|
* the same object. |
|
* @return the resultant matrix |
|
*/ |
|
public Matrix4f mult(Matrix4f in2, Matrix4f store) { |
|
if (store == null) |
|
store = new Matrix4f(); |
|
|
|
float temp00, temp01, temp02, temp03; |
|
float temp10, temp11, temp12, temp13; |
|
float temp20, temp21, temp22, temp23; |
|
float temp30, temp31, temp32, temp33; |
|
|
|
temp00 = m00 * in2.m00 + m01 * in2.m10 + m02 * in2.m20 + m03 * in2.m30; |
|
temp01 = m00 * in2.m01 + m01 * in2.m11 + m02 * in2.m21 + m03 * in2.m31; |
|
temp02 = m00 * in2.m02 + m01 * in2.m12 + m02 * in2.m22 + m03 * in2.m32; |
|
temp03 = m00 * in2.m03 + m01 * in2.m13 + m02 * in2.m23 + m03 * in2.m33; |
|
|
|
temp10 = m10 * in2.m00 + m11 * in2.m10 + m12 * in2.m20 + m13 * in2.m30; |
|
temp11 = m10 * in2.m01 + m11 * in2.m11 + m12 * in2.m21 + m13 * in2.m31; |
|
temp12 = m10 * in2.m02 + m11 * in2.m12 + m12 * in2.m22 + m13 * in2.m32; |
|
temp13 = m10 * in2.m03 + m11 * in2.m13 + m12 * in2.m23 + m13 * in2.m33; |
|
|
|
temp20 = m20 * in2.m00 + m21 * in2.m10 + m22 * in2.m20 + m23 * in2.m30; |
|
temp21 = m20 * in2.m01 + m21 * in2.m11 + m22 * in2.m21 + m23 * in2.m31; |
|
temp22 = m20 * in2.m02 + m21 * in2.m12 + m22 * in2.m22 + m23 * in2.m32; |
|
temp23 = m20 * in2.m03 + m21 * in2.m13 + m22 * in2.m23 + m23 * in2.m33; |
|
|
|
temp30 = m30 * in2.m00 + m31 * in2.m10 + m32 * in2.m20 + m33 * in2.m30; |
|
temp31 = m30 * in2.m01 + m31 * in2.m11 + m32 * in2.m21 + m33 * in2.m31; |
|
temp32 = m30 * in2.m02 + m31 * in2.m12 + m32 * in2.m22 + m33 * in2.m32; |
|
temp33 = m30 * in2.m03 + m31 * in2.m13 + m32 * in2.m23 + m33 * in2.m33; |
|
|
|
store.m00 = temp00; |
|
store.m01 = temp01; |
|
store.m02 = temp02; |
|
store.m03 = temp03; |
|
store.m10 = temp10; |
|
store.m11 = temp11; |
|
store.m12 = temp12; |
|
store.m13 = temp13; |
|
store.m20 = temp20; |
|
store.m21 = temp21; |
|
store.m22 = temp22; |
|
store.m23 = temp23; |
|
store.m30 = temp30; |
|
store.m31 = temp31; |
|
store.m32 = temp32; |
|
store.m33 = temp33; |
|
|
|
return store; |
|
} |
|
|
|
/** |
|
* <code>mult</code> multiplies this matrix with another matrix. The results |
|
* are stored internally and a handle to this matrix will then be returned. |
|
* This matrix will be on the left hand side, while the parameter matrix |
|
* will be on the right. |
|
* |
|
* @param in2 the matrix to multiply this matrix by. |
|
* @return the resultant matrix |
|
*/ |
|
public Matrix4f multLocal(Matrix4f in2) { |
|
|
|
return mult(in2, this); |
|
} |
|
|
|
/** |
|
* <code>mult</code> multiplies a vector about a rotation matrix. The |
|
* resulting vector is returned as a new Vector3f. |
|
* |
|
* @param vec vec to multiply against. |
|
* @return the rotated vector. |
|
*/ |
|
public Vector3f mult(Vector3f vec) { |
|
return mult(vec, null); |
|
} |
|
|
|
/** |
|
* <code>mult</code> multiplies a vector about a rotation matrix and adds |
|
* translation. The resulting vector is returned. |
|
* |
|
* @param vec vec to multiply against. |
|
* @param store a vector to store the result in. Created if null is passed. |
|
* @return the rotated vector. |
|
*/ |
|
public Vector3f mult(Vector3f vec, Vector3f store) { |
|
if (store == null) |
|
store = new Vector3f(); |
|
|
|
float vx = vec.x, vy = vec.y, vz = vec.z; |
|
store.x = m00 * vx + m01 * vy + m02 * vz + m03; |
|
store.y = m10 * vx + m11 * vy + m12 * vz + m13; |
|
store.z = m20 * vx + m21 * vy + m22 * vz + m23; |
|
|
|
return store; |
|
} |
|
|
|
/** |
|
* <code>mult</code> multiplies a vector about a rotation matrix. The |
|
* resulting vector is returned. |
|
* |
|
* @param vec vec to multiply against. |
|
* @param store a vector to store the result in. created if null is passed. |
|
* @return the rotated vector. |
|
*/ |
|
public Vector3f multAcross(Vector3f vec, Vector3f store) { |
|
if (null == vec) { |
|
return null; |
|
} |
|
if (store == null) |
|
store = new Vector3f(); |
|
|
|
float vx = vec.x, vy = vec.y, vz = vec.z; |
|
store.x = m00 * vx + m10 * vy + m20 * vz + m30 * 1; |
|
store.y = m01 * vx + m11 * vy + m21 * vz + m31 * 1; |
|
store.z = m02 * vx + m12 * vy + m22 * vz + m32 * 1; |
|
|
|
return store; |
|
} |
|
|
|
/** |
|
* <code>mult</code> multiplies a quaternion about a matrix. The resulting |
|
* vector is returned. |
|
* |
|
* @param vec vec to multiply against. |
|
* @param store a quaternion to store the result in. created if null is |
|
* passed. |
|
* @return store = this * vec |
|
*/ |
|
public Quaternion mult(Quaternion vec, Quaternion store) { |
|
|
|
if (null == vec) { |
|
return null; |
|
} |
|
if (store == null) |
|
store = new Quaternion(); |
|
|
|
float x = m00 * vec.x + m10 * vec.y + m20 * vec.z + m30 * vec.w; |
|
float y = m01 * vec.x + m11 * vec.y + m21 * vec.z + m31 * vec.w; |
|
float z = m02 * vec.x + m12 * vec.y + m22 * vec.z + m32 * vec.w; |
|
float w = m03 * vec.x + m13 * vec.y + m23 * vec.z + m33 * vec.w; |
|
store.x = x; |
|
store.y = y; |
|
store.z = z; |
|
store.w = w; |
|
|
|
return store; |
|
} |
|
|
|
/** |
|
* <code>mult</code> multiplies an array of 4 floats against this rotation |
|
* matrix. The results are stored directly in the array. (vec4f x mat4f) |
|
* |
|
* @param vec4f float array (size 4) to multiply against the matrix. |
|
* @return the vec4f for chaining. |
|
*/ |
|
public float[] mult(float[] vec4f) { |
|
if (null == vec4f || vec4f.length != 4) { |
|
return null; |
|
} |
|
|
|
float x = vec4f[0], y = vec4f[1], z = vec4f[2], w = vec4f[3]; |
|
|
|
vec4f[0] = m00 * x + m01 * y + m02 * z + m03 * w; |
|
vec4f[1] = m10 * x + m11 * y + m12 * z + m13 * w; |
|
vec4f[2] = m20 * x + m21 * y + m22 * z + m23 * w; |
|
vec4f[3] = m30 * x + m31 * y + m32 * z + m33 * w; |
|
|
|
return vec4f; |
|
} |
|
|
|
/** |
|
* <code>mult</code> multiplies an array of 4 floats against this rotation |
|
* matrix. The results are stored directly in the array. (vec4f x mat4f) |
|
* |
|
* @param vec4f float array (size 4) to multiply against the matrix. |
|
* @return the vec4f for chaining. |
|
*/ |
|
public float[] multAcross(float[] vec4f) { |
|
if (null == vec4f || vec4f.length != 4) { |
|
return null; |
|
} |
|
|
|
float x = vec4f[0], y = vec4f[1], z = vec4f[2], w = vec4f[3]; |
|
|
|
vec4f[0] = m00 * x + m10 * y + m20 * z + m30 * w; |
|
vec4f[1] = m01 * x + m11 * y + m21 * z + m31 * w; |
|
vec4f[2] = m02 * x + m12 * y + m22 * z + m32 * w; |
|
vec4f[3] = m03 * x + m13 * y + m23 * z + m33 * w; |
|
|
|
return vec4f; |
|
} |
|
|
|
/** |
|
* Inverts this matrix as a new Matrix4f. |
|
* |
|
* @return The new inverse matrix |
|
*/ |
|
public Matrix4f invert() { |
|
return invert(null); |
|
} |
|
|
|
/** |
|
* Inverts this matrix and stores it in the given store. |
|
* |
|
* @return The store |
|
*/ |
|
public Matrix4f invert(Matrix4f store) { |
|
if (store == null) |
|
store = new Matrix4f(); |
|
|
|
float fA0 = m00 * m11 - m01 * m10; |
|
float fA1 = m00 * m12 - m02 * m10; |
|
float fA2 = m00 * m13 - m03 * m10; |
|
float fA3 = m01 * m12 - m02 * m11; |
|
float fA4 = m01 * m13 - m03 * m11; |
|
float fA5 = m02 * m13 - m03 * m12; |
|
float fB0 = m20 * m31 - m21 * m30; |
|
float fB1 = m20 * m32 - m22 * m30; |
|
float fB2 = m20 * m33 - m23 * m30; |
|
float fB3 = m21 * m32 - m22 * m31; |
|
float fB4 = m21 * m33 - m23 * m31; |
|
float fB5 = m22 * m33 - m23 * m32; |
|
float fDet = fA0 * fB5 - fA1 * fB4 + fA2 * fB3 + fA3 * fB2 - fA4 * fB1 + fA5 * fB0; |
|
|
|
if (FastMath.abs(fDet) <= 0) |
|
return store.zero(); |
|
|
|
store.m00 = +m11 * fB5 - m12 * fB4 + m13 * fB3; |
|
store.m10 = -m10 * fB5 + m12 * fB2 - m13 * fB1; |
|
store.m20 = +m10 * fB4 - m11 * fB2 + m13 * fB0; |
|
store.m30 = -m10 * fB3 + m11 * fB1 - m12 * fB0; |
|
store.m01 = -m01 * fB5 + m02 * fB4 - m03 * fB3; |
|
store.m11 = +m00 * fB5 - m02 * fB2 + m03 * fB1; |
|
store.m21 = -m00 * fB4 + m01 * fB2 - m03 * fB0; |
|
store.m31 = +m00 * fB3 - m01 * fB1 + m02 * fB0; |
|
store.m02 = +m31 * fA5 - m32 * fA4 + m33 * fA3; |
|
store.m12 = -m30 * fA5 + m32 * fA2 - m33 * fA1; |
|
store.m22 = +m30 * fA4 - m31 * fA2 + m33 * fA0; |
|
store.m32 = -m30 * fA3 + m31 * fA1 - m32 * fA0; |
|
store.m03 = -m21 * fA5 + m22 * fA4 - m23 * fA3; |
|
store.m13 = +m20 * fA5 - m22 * fA2 + m23 * fA1; |
|
store.m23 = -m20 * fA4 + m21 * fA2 - m23 * fA0; |
|
store.m33 = +m20 * fA3 - m21 * fA1 + m22 * fA0; |
|
|
|
float fInvDet = 1.0f / fDet; |
|
store.multLocal(fInvDet); |
|
|
|
return store; |
|
} |
|
|
|
/** |
|
* Inverts this matrix locally. |
|
* |
|
* @return this |
|
*/ |
|
public Matrix4f invertLocal() { |
|
|
|
float fA0 = m00 * m11 - m01 * m10; |
|
float fA1 = m00 * m12 - m02 * m10; |
|
float fA2 = m00 * m13 - m03 * m10; |
|
float fA3 = m01 * m12 - m02 * m11; |
|
float fA4 = m01 * m13 - m03 * m11; |
|
float fA5 = m02 * m13 - m03 * m12; |
|
float fB0 = m20 * m31 - m21 * m30; |
|
float fB1 = m20 * m32 - m22 * m30; |
|
float fB2 = m20 * m33 - m23 * m30; |
|
float fB3 = m21 * m32 - m22 * m31; |
|
float fB4 = m21 * m33 - m23 * m31; |
|
float fB5 = m22 * m33 - m23 * m32; |
|
float fDet = fA0 * fB5 - fA1 * fB4 + fA2 * fB3 + fA3 * fB2 - fA4 * fB1 + fA5 * fB0; |
|
|
|
if (FastMath.abs(fDet) <= FastMath.FLT_EPSILON) |
|
return zero(); |
|
|
|
float f00 = +m11 * fB5 - m12 * fB4 + m13 * fB3; |
|
float f10 = -m10 * fB5 + m12 * fB2 - m13 * fB1; |
|
float f20 = +m10 * fB4 - m11 * fB2 + m13 * fB0; |
|
float f30 = -m10 * fB3 + m11 * fB1 - m12 * fB0; |
|
float f01 = -m01 * fB5 + m02 * fB4 - m03 * fB3; |
|
float f11 = +m00 * fB5 - m02 * fB2 + m03 * fB1; |
|
float f21 = -m00 * fB4 + m01 * fB2 - m03 * fB0; |
|
float f31 = +m00 * fB3 - m01 * fB1 + m02 * fB0; |
|
float f02 = +m31 * fA5 - m32 * fA4 + m33 * fA3; |
|
float f12 = -m30 * fA5 + m32 * fA2 - m33 * fA1; |
|
float f22 = +m30 * fA4 - m31 * fA2 + m33 * fA0; |
|
float f32 = -m30 * fA3 + m31 * fA1 - m32 * fA0; |
|
float f03 = -m21 * fA5 + m22 * fA4 - m23 * fA3; |
|
float f13 = +m20 * fA5 - m22 * fA2 + m23 * fA1; |
|
float f23 = -m20 * fA4 + m21 * fA2 - m23 * fA0; |
|
float f33 = +m20 * fA3 - m21 * fA1 + m22 * fA0; |
|
|
|
m00 = f00; |
|
m01 = f01; |
|
m02 = f02; |
|
m03 = f03; |
|
m10 = f10; |
|
m11 = f11; |
|
m12 = f12; |
|
m13 = f13; |
|
m20 = f20; |
|
m21 = f21; |
|
m22 = f22; |
|
m23 = f23; |
|
m30 = f30; |
|
m31 = f31; |
|
m32 = f32; |
|
m33 = f33; |
|
|
|
float fInvDet = 1.0f / fDet; |
|
multLocal(fInvDet); |
|
|
|
return this; |
|
} |
|
|
|
/** |
|
* Returns a new matrix representing the adjoint of this matrix. |
|
* |
|
* @return The adjoint matrix |
|
*/ |
|
public Matrix4f adjoint() { |
|
return adjoint(null); |
|
} |
|
|
|
/** |
|
* Places the adjoint of this matrix in store (creates store if null.) |
|
* |
|
* @param store The matrix to store the result in. If null, a new matrix is |
|
* created. |
|
* @return store |
|
*/ |
|
public Matrix4f adjoint(Matrix4f store) { |
|
if (store == null) |
|
store = new Matrix4f(); |
|
|
|
float fA0 = m00 * m11 - m01 * m10; |
|
float fA1 = m00 * m12 - m02 * m10; |
|
float fA2 = m00 * m13 - m03 * m10; |
|
float fA3 = m01 * m12 - m02 * m11; |
|
float fA4 = m01 * m13 - m03 * m11; |
|
float fA5 = m02 * m13 - m03 * m12; |
|
float fB0 = m20 * m31 - m21 * m30; |
|
float fB1 = m20 * m32 - m22 * m30; |
|
float fB2 = m20 * m33 - m23 * m30; |
|
float fB3 = m21 * m32 - m22 * m31; |
|
float fB4 = m21 * m33 - m23 * m31; |
|
float fB5 = m22 * m33 - m23 * m32; |
|
|
|
store.m00 = +m11 * fB5 - m12 * fB4 + m13 * fB3; |
|
store.m10 = -m10 * fB5 + m12 * fB2 - m13 * fB1; |
|
store.m20 = +m10 * fB4 - m11 * fB2 + m13 * fB0; |
|
store.m30 = -m10 * fB3 + m11 * fB1 - m12 * fB0; |
|
store.m01 = -m01 * fB5 + m02 * fB4 - m03 * fB3; |
|
store.m11 = +m00 * fB5 - m02 * fB2 + m03 * fB1; |
|
store.m21 = -m00 * fB4 + m01 * fB2 - m03 * fB0; |
|
store.m31 = +m00 * fB3 - m01 * fB1 + m02 * fB0; |
|
store.m02 = +m31 * fA5 - m32 * fA4 + m33 * fA3; |
|
store.m12 = -m30 * fA5 + m32 * fA2 - m33 * fA1; |
|
store.m22 = +m30 * fA4 - m31 * fA2 + m33 * fA0; |
|
store.m32 = -m30 * fA3 + m31 * fA1 - m32 * fA0; |
|
store.m03 = -m21 * fA5 + m22 * fA4 - m23 * fA3; |
|
store.m13 = +m20 * fA5 - m22 * fA2 + m23 * fA1; |
|
store.m23 = -m20 * fA4 + m21 * fA2 - m23 * fA0; |
|
store.m33 = +m20 * fA3 - m21 * fA1 + m22 * fA0; |
|
|
|
return store; |
|
} |
|
|
|
/** |
|
* <code>determinant</code> generates the determinate of this matrix. |
|
* |
|
* @return the determinate |
|
*/ |
|
public float determinant() { |
|
float fA0 = m00 * m11 - m01 * m10; |
|
float fA1 = m00 * m12 - m02 * m10; |
|
float fA2 = m00 * m13 - m03 * m10; |
|
float fA3 = m01 * m12 - m02 * m11; |
|
float fA4 = m01 * m13 - m03 * m11; |
|
float fA5 = m02 * m13 - m03 * m12; |
|
float fB0 = m20 * m31 - m21 * m30; |
|
float fB1 = m20 * m32 - m22 * m30; |
|
float fB2 = m20 * m33 - m23 * m30; |
|
float fB3 = m21 * m32 - m22 * m31; |
|
float fB4 = m21 * m33 - m23 * m31; |
|
float fB5 = m22 * m33 - m23 * m32; |
|
return fA0 * fB5 - fA1 * fB4 + fA2 * fB3 + fA3 * fB2 - fA4 * fB1 + fA5 * fB0; |
|
} |
|
|
|
/** |
|
* Sets all of the values in this matrix to zero. |
|
* |
|
* @return this matrix |
|
*/ |
|
public Matrix4f zero() { |
|
m00 = m01 = m02 = m03 = m10 = m11 = m12 = m13 = m20 = m21 = m22 = m23 = m30 = m31 = m32 = m33 = 0.0f; |
|
return this; |
|
} |
|
|
|
public Matrix4f add(Matrix4f mat) { |
|
Matrix4f result = new Matrix4f(); |
|
result.m00 = this.m00 + mat.m00; |
|
result.m01 = this.m01 + mat.m01; |
|
result.m02 = this.m02 + mat.m02; |
|
result.m03 = this.m03 + mat.m03; |
|
result.m10 = this.m10 + mat.m10; |
|
result.m11 = this.m11 + mat.m11; |
|
result.m12 = this.m12 + mat.m12; |
|
result.m13 = this.m13 + mat.m13; |
|
result.m20 = this.m20 + mat.m20; |
|
result.m21 = this.m21 + mat.m21; |
|
result.m22 = this.m22 + mat.m22; |
|
result.m23 = this.m23 + mat.m23; |
|
result.m30 = this.m30 + mat.m30; |
|
result.m31 = this.m31 + mat.m31; |
|
result.m32 = this.m32 + mat.m32; |
|
result.m33 = this.m33 + mat.m33; |
|
return result; |
|
} |
|
|
|
/** |
|
* <code>add</code> adds the values of a parameter matrix to this matrix. |
|
* |
|
* @param mat the matrix to add to this. |
|
*/ |
|
public void addLocal(Matrix4f mat) { |
|
m00 += mat.m00; |
|
m01 += mat.m01; |
|
m02 += mat.m02; |
|
m03 += mat.m03; |
|
m10 += mat.m10; |
|
m11 += mat.m11; |
|
m12 += mat.m12; |
|
m13 += mat.m13; |
|
m20 += mat.m20; |
|
m21 += mat.m21; |
|
m22 += mat.m22; |
|
m23 += mat.m23; |
|
m30 += mat.m30; |
|
m31 += mat.m31; |
|
m32 += mat.m32; |
|
m33 += mat.m33; |
|
} |
|
|
|
public Vector3f toTranslationVector() { |
|
return new Vector3f(m03, m13, m23); |
|
} |
|
|
|
public void toTranslationVector(Vector3f vector) { |
|
vector.set(m03, m13, m23); |
|
} |
|
|
|
public Quaternion toRotationQuat() { |
|
Quaternion quat = new Quaternion(); |
|
quat.fromRotationMatrix(toRotationMatrix()); |
|
return quat; |
|
} |
|
|
|
public void toRotationQuat(Quaternion q) { |
|
q.fromRotationMatrix(toRotationMatrix()); |
|
} |
|
|
|
public Matrix3f toRotationMatrix() { |
|
return new Matrix3f(m00, m01, m02, m10, m11, m12, m20, m21, m22); |
|
|
|
} |
|
|
|
public void toRotationMatrix(Matrix3f mat) { |
|
mat.m00 = m00; |
|
mat.m01 = m01; |
|
mat.m02 = m02; |
|
mat.m10 = m10; |
|
mat.m11 = m11; |
|
mat.m12 = m12; |
|
mat.m20 = m20; |
|
mat.m21 = m21; |
|
mat.m22 = m22; |
|
|
|
} |
|
|
|
/** |
|
* <code>setTranslation</code> will set the matrix's translation values. |
|
* |
|
* @param translation the new values for the translation. |
|
* @throws Exception if translation is not size 3. |
|
*/ |
|
public void setTranslation(float[] translation) throws Exception { |
|
if (translation.length != 3) { |
|
throw new Exception("Translation size must be 3."); |
|
} |
|
m03 = translation[0]; |
|
m13 = translation[1]; |
|
m23 = translation[2]; |
|
} |
|
|
|
/** |
|
* <code>setTranslation</code> will set the matrix's translation values. |
|
* |
|
* @param x value of the translation on the x axis |
|
* @param y value of the translation on the y axis |
|
* @param z value of the translation on the z axis |
|
*/ |
|
public void setTranslation(float x, float y, float z) { |
|
m03 = x; |
|
m13 = y; |
|
m23 = z; |
|
} |
|
|
|
/** |
|
* <code>setTranslation</code> will set the matrix's translation values. |
|
* |
|
* @param translation the new values for the translation. |
|
*/ |
|
public void setTranslation(Vector3f translation) { |
|
m03 = translation.x; |
|
m13 = translation.y; |
|
m23 = translation.z; |
|
} |
|
|
|
/** |
|
* <code>setInverseTranslation</code> will set the matrix's inverse |
|
* translation values. |
|
* |
|
* @param translation the new values for the inverse translation. |
|
* @throws Exception if translation is not size 3. |
|
*/ |
|
public void setInverseTranslation(float[] translation) throws Exception { |
|
if (translation.length != 3) { |
|
throw new Exception("Translation size must be 3."); |
|
} |
|
m03 = -translation[0]; |
|
m13 = -translation[1]; |
|
m23 = -translation[2]; |
|
} |
|
|
|
/** |
|
* <code>angleRotation</code> sets this matrix to that of a rotation about |
|
* three axes (x, y, z). Where each axis has a specified rotation in |
|
* degrees. These rotations are expressed in a single <code>Vector3f</code> |
|
* object. |
|
* |
|
* @param angles the angles to rotate. |
|
*/ |
|
public void angleRotation(Vector3f angles) { |
|
float angle; |
|
float sr, sp, sy, cr, cp, cy; |
|
|
|
angle = (angles.z * FastMath.DEG_TO_RAD); |
|
sy = FastMath.sin(angle); |
|
cy = FastMath.cos(angle); |
|
angle = (angles.y * FastMath.DEG_TO_RAD); |
|
sp = FastMath.sin(angle); |
|
cp = FastMath.cos(angle); |
|
angle = (angles.x * FastMath.DEG_TO_RAD); |
|
sr = FastMath.sin(angle); |
|
cr = FastMath.cos(angle); |
|
|
|
// matrix = (Z * Y) * X |
|
m00 = cp * cy; |
|
m10 = cp * sy; |
|
m20 = -sp; |
|
m01 = sr * sp * cy + cr * -sy; |
|
m11 = sr * sp * sy + cr * cy; |
|
m21 = sr * cp; |
|
m02 = (cr * sp * cy + -sr * -sy); |
|
m12 = (cr * sp * sy + -sr * cy); |
|
m22 = cr * cp; |
|
m03 = 0.0f; |
|
m13 = 0.0f; |
|
m23 = 0.0f; |
|
} |
|
|
|
/** |
|
* <code>setRotationQuaternion</code> builds a rotation from a |
|
* <code>Quaternion</code>. |
|
* |
|
* @param quat the quaternion to build the rotation from. |
|
* @throws NullPointerException if quat is null. |
|
*/ |
|
public void setRotationQuaternion(Quaternion quat) { |
|
quat.toRotationMatrix(this); |
|
} |
|
|
|
/** |
|
* <code>setInverseRotationRadians</code> builds an inverted rotation from |
|
* Euler angles that are in radians. |
|
* |
|
* @param angles the Euler angles in radians. |
|
* @throws Exception if angles is not size 3. |
|
*/ |
|
public void setInverseRotationRadians(float[] angles) throws Exception { |
|
if (angles.length != 3) { |
|
throw new Exception("Angles must be of size 3."); |
|
} |
|
double cr = FastMath.cos(angles[0]); |
|
double sr = FastMath.sin(angles[0]); |
|
double cp = FastMath.cos(angles[1]); |
|
double sp = FastMath.sin(angles[1]); |
|
double cy = FastMath.cos(angles[2]); |
|
double sy = FastMath.sin(angles[2]); |
|
|
|
m00 = (float) (cp * cy); |
|
m10 = (float) (cp * sy); |
|
m20 = (float) (-sp); |
|
|
|
double srsp = sr * sp; |
|
double crsp = cr * sp; |
|
|
|
m01 = (float) (srsp * cy - cr * sy); |
|
m11 = (float) (srsp * sy + cr * cy); |
|
m21 = (float) (sr * cp); |
|
|
|
m02 = (float) (crsp * cy + sr * sy); |
|
m12 = (float) (crsp * sy - sr * cy); |
|
m22 = (float) (cr * cp); |
|
} |
|
|
|
/** |
|
* <code>setInverseRotationDegrees</code> builds an inverted rotation from |
|
* Euler angles that are in degrees. |
|
* |
|
* @param angles the Euler angles in degrees. |
|
* @throws Exception if angles is not size 3. |
|
*/ |
|
public void setInverseRotationDegrees(float[] angles) throws Exception { |
|
if (angles.length != 3) { |
|
throw new Exception("Angles must be of size 3."); |
|
} |
|
float vec[] = new float[3]; |
|
vec[0] = (angles[0] * FastMath.RAD_TO_DEG); |
|
vec[1] = (angles[1] * FastMath.RAD_TO_DEG); |
|
vec[2] = (angles[2] * FastMath.RAD_TO_DEG); |
|
setInverseRotationRadians(vec); |
|
} |
|
|
|
/** |
|
* <code>inverseTranslateVect</code> translates a given Vector3f by the |
|
* translation part of this matrix. |
|
* |
|
* @param vec the Vector3f data to be translated. |
|
* @throws Exception if the size of the Vector3f is not 3. |
|
*/ |
|
public void inverseTranslateVect(float[] vec) throws Exception { |
|
if (vec.length != 3) { |
|
throw new Exception("vec must be of size 3."); |
|
} |
|
|
|
vec[0] -= m03; |
|
vec[1] -= m13; |
|
vec[2] -= m23; |
|
} |
|
|
|
/** |
|
* <code>inverseTranslateVect</code> translates a given Vector3f by the |
|
* translation part of this matrix. |
|
* |
|
* @param data the Vector3f to be translated. |
|
* @throws Exception if the size of the Vector3f is not 3. |
|
*/ |
|
public void inverseTranslateVect(Vector3f data) { |
|
data.x -= m03; |
|
data.y -= m13; |
|
data.z -= m23; |
|
} |
|
|
|
/** |
|
* <code>inverseTranslateVect</code> translates a given Vector3f by the |
|
* translation part of this matrix. |
|
* |
|
* @param data the Vector3f to be translated. |
|
* @throws Exception if the size of the Vector3f is not 3. |
|
*/ |
|
public void translateVect(Vector3f data) { |
|
data.x += m03; |
|
data.y += m13; |
|
data.z += m23; |
|
} |
|
|
|
/** |
|
* <code>inverseRotateVect</code> rotates a given Vector3f by the rotation |
|
* part of this matrix. |
|
* |
|
* @param vec the Vector3f to be rotated. |
|
*/ |
|
public void inverseRotateVect(Vector3f vec) { |
|
float vx = vec.x, vy = vec.y, vz = vec.z; |
|
|
|
vec.x = vx * m00 + vy * m10 + vz * m20; |
|
vec.y = vx * m01 + vy * m11 + vz * m21; |
|
vec.z = vx * m02 + vy * m12 + vz * m22; |
|
} |
|
|
|
public void rotateVect(Vector3f vec) { |
|
float vx = vec.x, vy = vec.y, vz = vec.z; |
|
|
|
vec.x = vx * m00 + vy * m01 + vz * m02; |
|
vec.y = vx * m10 + vy * m11 + vz * m12; |
|
vec.z = vx * m20 + vy * m21 + vz * m22; |
|
} |
|
|
|
/** |
|
* <code>toString</code> returns the string representation of this object. |
|
* It is in a format of a 4x4 matrix. For example, an identity matrix would |
|
* be represented by the following string. com.jme.math.Matrix3f <br> |
|
* [<br> |
|
* 1.0 0.0 0.0 0.0 <br> |
|
* 0.0 1.0 0.0 0.0 <br> |
|
* 0.0 0.0 1.0 0.0 <br> |
|
* 0.0 0.0 0.0 1.0 <br> |
|
* ]<br> |
|
* |
|
* @return the string representation of this object. |
|
*/ |
|
@Override |
|
public String toString() { |
|
StringBuffer result = new StringBuffer("com.jme.math.Matrix4f\n[\n"); |
|
result.append(' '); |
|
result.append(m00); |
|
result.append(" "); |
|
result.append(m01); |
|
result.append(" "); |
|
result.append(m02); |
|
result.append(" "); |
|
result.append(m03); |
|
result.append(" \n"); |
|
result.append(' '); |
|
result.append(m10); |
|
result.append(" "); |
|
result.append(m11); |
|
result.append(" "); |
|
result.append(m12); |
|
result.append(" "); |
|
result.append(m13); |
|
result.append(" \n"); |
|
result.append(' '); |
|
result.append(m20); |
|
result.append(" "); |
|
result.append(m21); |
|
result.append(" "); |
|
result.append(m22); |
|
result.append(" "); |
|
result.append(m23); |
|
result.append(" \n"); |
|
result.append(' '); |
|
result.append(m30); |
|
result.append(" "); |
|
result.append(m31); |
|
result.append(" "); |
|
result.append(m32); |
|
result.append(" "); |
|
result.append(m33); |
|
result.append(" \n]"); |
|
return result.toString(); |
|
} |
|
|
|
/** |
|
* <code>hashCode</code> returns the hash code value as an integer and is |
|
* supported for the benefit of hashing based collection classes such as |
|
* Hashtable, HashMap, HashSet etc. |
|
* |
|
* @return the hashcode for this instance of Matrix4f. |
|
* @see java.lang.Object#hashCode() |
|
*/ |
|
@Override |
|
public int hashCode() { |
|
int hash = 37; |
|
hash = 37 * hash + Float.floatToIntBits(m00); |
|
hash = 37 * hash + Float.floatToIntBits(m01); |
|
hash = 37 * hash + Float.floatToIntBits(m02); |
|
hash = 37 * hash + Float.floatToIntBits(m03); |
|
|
|
hash = 37 * hash + Float.floatToIntBits(m10); |
|
hash = 37 * hash + Float.floatToIntBits(m11); |
|
hash = 37 * hash + Float.floatToIntBits(m12); |
|
hash = 37 * hash + Float.floatToIntBits(m13); |
|
|
|
hash = 37 * hash + Float.floatToIntBits(m20); |
|
hash = 37 * hash + Float.floatToIntBits(m21); |
|
hash = 37 * hash + Float.floatToIntBits(m22); |
|
hash = 37 * hash + Float.floatToIntBits(m23); |
|
|
|
hash = 37 * hash + Float.floatToIntBits(m30); |
|
hash = 37 * hash + Float.floatToIntBits(m31); |
|
hash = 37 * hash + Float.floatToIntBits(m32); |
|
hash = 37 * hash + Float.floatToIntBits(m33); |
|
|
|
return hash; |
|
} |
|
|
|
/** |
|
* are these two matrices the same? they are is they both have the same mXX |
|
* values. |
|
* |
|
* @param o the object to compare for equality |
|
* @return true if they are equal |
|
*/ |
|
@Override |
|
public boolean equals(Object o) { |
|
if (!(o instanceof Matrix4f) || o == null) { |
|
return false; |
|
} |
|
|
|
if (this == o) { |
|
return true; |
|
} |
|
|
|
Matrix4f comp = (Matrix4f) o; |
|
if (Float.compare(m00, comp.m00) != 0) |
|
return false; |
|
if (Float.compare(m01, comp.m01) != 0) |
|
return false; |
|
if (Float.compare(m02, comp.m02) != 0) |
|
return false; |
|
if (Float.compare(m03, comp.m03) != 0) |
|
return false; |
|
|
|
if (Float.compare(m10, comp.m10) != 0) |
|
return false; |
|
if (Float.compare(m11, comp.m11) != 0) |
|
return false; |
|
if (Float.compare(m12, comp.m12) != 0) |
|
return false; |
|
if (Float.compare(m13, comp.m13) != 0) |
|
return false; |
|
|
|
if (Float.compare(m20, comp.m20) != 0) |
|
return false; |
|
if (Float.compare(m21, comp.m21) != 0) |
|
return false; |
|
if (Float.compare(m22, comp.m22) != 0) |
|
return false; |
|
if (Float.compare(m23, comp.m23) != 0) |
|
return false; |
|
|
|
if (Float.compare(m30, comp.m30) != 0) |
|
return false; |
|
if (Float.compare(m31, comp.m31) != 0) |
|
return false; |
|
if (Float.compare(m32, comp.m32) != 0) |
|
return false; |
|
return Float.compare(m33, comp.m33) == 0; |
|
} |
|
|
|
/** |
|
* @return true if this matrix is identity |
|
*/ |
|
public boolean isIdentity() { |
|
return (m00 == 1 && m01 == 0 && m02 == 0 && m03 == 0) && (m10 == 0 && m11 == 1 && m12 == 0 && m13 == 0) |
|
&& (m20 == 0 && m21 == 0 && m22 == 1 && m23 == 0) && (m30 == 0 && m31 == 0 && m32 == 0 && m33 == 1); |
|
} |
|
|
|
/** |
|
* Apply a scale to this matrix. |
|
* |
|
* @param scale the scale to apply |
|
*/ |
|
public void scale(Vector3f scale) { |
|
m00 *= scale.getX(); |
|
m10 *= scale.getX(); |
|
m20 *= scale.getX(); |
|
m30 *= scale.getX(); |
|
m01 *= scale.getY(); |
|
m11 *= scale.getY(); |
|
m21 *= scale.getY(); |
|
m31 *= scale.getY(); |
|
m02 *= scale.getZ(); |
|
m12 *= scale.getZ(); |
|
m22 *= scale.getZ(); |
|
m32 *= scale.getZ(); |
|
} |
|
|
|
// XXX: This tests more solid than converting the q to a matrix and |
|
// multiplying... why? |
|
public void multLocal(Quaternion rotation) { |
|
Vector3f axis = new Vector3f(); |
|
float angle = rotation.toAngleAxis(axis); |
|
Matrix4f matrix4f = new Matrix4f(); |
|
matrix4f.fromAngleAxis(angle, axis); |
|
multLocal(matrix4f); |
|
} |
|
|
|
@Override |
|
public Matrix4f clone() { |
|
try { |
|
return (Matrix4f) super.clone(); |
|
} catch (CloneNotSupportedException e) { |
|
Logger.error(e); |
|
throw new AssertionError(); // can not happen |
|
} |
|
} |
|
}
|
|
|